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S1 Complements to the econometrics

S1.1 Conditions for Assumptions 2 and 3 in Example 2

Let us verify Assumptions 2 and 3 in Example 2 under the following conditions.

Assumption S1. (regularity in Example 2)

(i) Observations are i.i.d. across individuals conditional on the αi0’s and µi0’s. The parameter

spaces Θ for θ0 = (ρ0, β
′
0)′ and A for (αi0, µ

′
i0)′ are compact, and θ0 belongs to the interior of

Θ.

(ii) |ρ0| < 1, and (Yit, X
′
it)
′ is stationary for every i. E(Uit) = 0, E(UitYi,t−1) = 0, and

E(UitXit) = 0. In addition, letting Wit = (Yi,t−1, X
′
it)
′, the minimum eigenvalue of

E
(
(Wit − E(Wit)) (Wit − E(Wit))

′) is bounded away from zero.

(iii) Let Vit = Xit − µi0. E(Vit) = 0. Moreover, for every i, Zit = (Uit, V
′
it)
′ is a stationary mixing

sequence such that, for some 0 < a < 1 and C > 0:

sup
i

∣∣∣∣∣sup
t

sup
B∈Bit,D∈Dit+m

|Pr(B ∩D)− Pr(B) Pr(D)|

∣∣∣∣∣ ≤ Cam,
where Bit and Dit denote the sigma-algebras generated by (Zit, Zit−1, ...) and (Zit, Zit+1, ...), re-

spectively. Zit has finite (8 + η) moments uniformly in i, t, for some η > 0. N = O(T ).

Consider the quasi-likelihood function: `i(αi, θ) = − 1
2T

∑T
t=1(Yit − ρYi,t−1 −X ′itβ − αi)2. Third-
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order differentiability in Assumption 2 (i) is immediate. Furthermore we have, using stationarity:

E (`i(αi0, θ0)− `i(αi, θ))

=
1

2
E
(

2Uit
(
W ′it(θ0 − θ) + αi0 − αi

)
+
(
W ′it(θ0 − θ) + αi0 − αi

)2)
=

1

2
E
((
W ′it(θ0 − θ) + αi0 − αi

)2)
.

Using Assumption S1 (ii) thus implies the first condition in Assumption 2 (ii).

Next we have: E (vi (αi, θ)) = 1−ρ
1−ρ0

(
αi0 + β′0µi0

)
− β′µi0 − αi, so:

αi(θ) =
1− ρ
1− ρ0

αi0 +

(
1− ρ
1− ρ0

β0 − β
)′
µi0,

and αi(θ) is unique. Moreover vαi = −1, so infi infθ E(−∂2`i(αi(θ),θ)
∂αi∂α′

i
) = 1. Finally, the function

1
N

∑N
i=1 E(`i(αi(θ), θ)) is quadratic in θ = (ρ, β′)′, and its partial derivatives with respect to ρ and β

are, respectively:

1

N

N∑
i=1

E
((

Yi,t−1 −
αi0 + µ′i0β0

1− ρ0

)(
Yit −

αi0 + µ′i0β0

1− ρ0

− ρ
(
Yi,t−1 −

αi0 + µ′i0β0

1− ρ0

)
− (Xit − µi0)′β

))
,

and:

1

N

N∑
i=1

E
(

(Xit − µi0)

(
Yit −

αi0 + µ′i0β0

1− ρ0

− ρ
(
Yi,t−1 −

αi0 + µ′i0β0

1− ρ0

)
− (Xit − µi0)′β

))
.

It is easy to verify that those are zero at θ0. Moreover, the second derivative −H is negative definite

by Assumption S1 (ii). This completes the verification of Assumption 2 (ii).

Next, since (Uit, V
′
it)
′ has finite second moments and A and Θ are compact it is easy to see that

supi sup(αi,θ) |E(`i(αi, θ))| = O(1), and similarly for the first three derivatives of `i. From the assump-

tions on time-series mixing and moment existence it follows (as in Lemma 1 in Hahn and Kuersteiner,

2011) that, for all (αi, θ), maxi=1,...,N |`i(αi, θ)− E (`i(αi, θ))| = op (1). Combining the latter lemma

with the compactness of the parameter space as in Lemma 4 in Hahn and Kuersteiner (2011) one can

show that maxi=1,...,N sup(αi,θ) |`i(αi, θ)− E (`i(αi, θ))| = op (1). The same argument can be applied

to all first three derivatives of `i. Moreover, the rate on 1
N

∑N
i=1(`i(αi0, θ0) − E(`i(αi0, θ0)))2, and

the corresponding rates on the derivatives of `i, come from the fact that (Uit, V
′
it)
′ has finite second

moments and satisfies suitable mixing conditions.

Next, we have:

E(α,µ) (vi(αi(θ), θ)) = E(α,µ)

(
Yit −

αi0 + µ′i0β0

1− ρ0

− ρ
(
Yi,t−1 −

αi0 + µ′i0β0

1− ρ0

)
− (Xit − µi0)′β

)
= (1− ρ)

α− αi0 + (µ− µi0)′β0

1− ρ0

− (µ− µi0)′β,
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so:

∂

∂α

∣∣∣∣
(αi0,µi0)

E(α,µ) (vi(αi(θ), θ)) =
1− ρ
1− ρ0

,
∂

∂µ

∣∣∣∣
(αi0,µi0)

E(α,µ) (vi(αi(θ), θ)) =
1− ρ
1− ρ0

β0 − β,

which are uniformly bounded. Likewise:

E(α,µ)

(
vθi (αi0, θ0)

)
=
(
−E(α,µ)(Yi,t−1) , −E(α,µ)(Xit)

′)′ = (−α+ µ′β0

1− ρ0

, −µ′
)′
,

and E(α,µ) (vαi (αi0, θ0)) = −1, both of which have uniformly bounded derivatives. This shows the last

part of Assumption 2 (iii).

Turning to the part (iv) in Assumption 2 we have:

α̂(k̂i, θ) = Y (k̂i)− ρY −1(k̂i)−X(k̂i)
′β,

where Y (k̂i), Y −1(k̂i) and X(k̂i) are group-specific means of Yit, Yi,t−1 and Xit, over individuals and

time periods. This implies that ̂̀i(θ) = `i(α̂(k̂i, θ), θ) is quadratic in θ. Assumption 2 (iv) directly

follows.

Finally, when using hi = (Y i, X
′
i)
′ in the classification step, it follows from the expressions in

the main text that ϕ is injective and both ϕ and ψ are Lipschitz, since |ρ0| < 1. This shows that

Assumption 3 holds.

S1.2 Sequential estimation based on a partial likelihood

Consider the following grouped fixed-effects estimator. Instead of jointly maximizing the likelihood

function in the second step, one sequentially estimates (α1, θ1) based on
∑N

i=1 `i1(αi1, θ1), and (α2, θ2)

given (α1, θ1) based on
∑N

i=1 `i2(αi1, αi2, θ1, θ2). Under similar assumptions as in Theorem 1, θ̂1 and

α̂1(k̂i) follow the same expansions as in (6) and (7) in Theorem 1, up to adapting the notation. The

grouped fixed-effects estimator of α2’s and θ2 is then:

(
θ̂2, α̂2

)
= argmax

(θ2,α2)

N∑
i=1

`i2

(
α̂1

(
k̂i

)
, α2

(
k̂i

)
, θ̂1, θ2

)
.

Next, let α̂i2 (α1, θ1, θ2) = argmaxα2
`i2 (α1, α2, θ1, θ2). Replacing `i by:

̂̀
i2 (αi2, θ2) = `i2

(
α̂1

(
k̂i

)
, αi2, θ̂1, θ2

)
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in the proof of Theorem 1, we obtain the following counterpart to (A3):

1

N

N∑
i=1

∂ ̂̀i2(α̂2(k̂i, θ20), θ20)

∂θ2
=

1

N

N∑
i=1

∂`i2

(
α̂1

(
k̂i

)
, α̂i2

(
α̂1

(
k̂i

)
, θ̂1, θ20

)
, θ̂1, θ20

)
∂θ2

+Op (δ)

=
1

N

N∑
i=1

∂`i2 (αi10, αi20, θ10, θ20)

∂θ2
+
∂2`i2 (αi10, αi20, θ10, θ20)

∂θ2∂α′i1
(α̂i1 − αi10)

+
∂2`i2 (αi10, αi20, θ10, θ20)

∂θ2∂θ
′
1

(
θ̂1 − θ10

)
+
∂2`i2 (αi10, αi20, θ10, θ20)

∂θ2∂α′i2

(
∂α̂i2 (αi10, θ10, θ20)

∂α′i1
(α̂i1 − αi10)

+
∂α̂i2 (αi10, θ10, θ20)

∂θ′1

(
θ̂1 − θ10

)
+ α̂i2 (αi10, θ10, θ20)− αi20

)
+Op (δ) ,

where the last identity follows as in the proof of Theorem 1 (see also (A32) in the proof of Corollary

3).

We also have the following counterpart to (A4):

1

N

N∑
i=1

∂2

∂θ2∂θ
′
2

∣∣∣∣
θ20

̂̀
i2

(
α̂2(k̂i, θ2), θ2

)
=

1

N

N∑
i=1

∂2

∂θ2∂θ
′
2

∣∣∣∣
θ20

̂̀
i2

(
α̂i2

(
α̂1

(
k̂i

)
, θ̂1, θ20

)
, θ2

)
+ op(1)

=
1

N

N∑
i=1

∂2

∂θ2∂θ
′
2

∣∣∣∣
θ20

`i2 (αi10, α̂i2 (αi10, θ10, θ2) , θ10, θ2) + op(1).

Let us define, omitting references to true values for conciseness:

si1 =
∂`i1
∂θ1

+ E
(

∂2`i1
∂θ1∂α′i1

)[
E
(
− ∂2`i1
∂αi1∂α′i1

)]−1
∂`i1
∂αi1

,

H1 = lim
N,T→∞

1

N

N∑
i=1

E
(
− ∂2`i1
∂θ1∂θ

′
1

)
− E

(
∂2`i1

∂θ1∂α′i1

)[
E
(
− ∂2`i1
∂αi1∂α′i1

)]−1

E
(

∂2`i1
∂αi1∂θ

′
1

)
,

si2 =
∂`i2
∂θ2

+ E
(

∂2`i2
∂θ2∂α′i1

)[
E
(
− ∂2`i1
∂αi1∂α′i1

)]−1
∂`i1
∂αi1

+ E
(
∂2`i2
∂θ2∂θ

′
1

)
H−1

1

1

N

N∑
j=1

sj1

+ E
(

∂2`i2
∂θ2∂α′i2

)[
E
(
− ∂2`i2
∂αi2∂α′i2

)]−1
(
∂`i2
∂αi2

+ E
(

∂2`i2
∂αi2∂α′i1

)[
E
(
− ∂2`i1
∂αi1∂α′i1

)]−1
∂`i1
∂αi1

+ E
(

∂2`i2
∂αi2∂θ

′
1

)
H−1

1

1

N

N∑
j=1

sj1

)
,

H2 = lim
N,T→∞

1

N

N∑
i=1

E
(
− ∂2`i2
∂θ2∂θ

′
2

)
− E

(
∂2`i2

∂θ2∂α′i2

)[
E
(
− ∂2`i2
∂αi2∂α′i2

)]−1

E
(

∂2`i2
∂αi2∂θ

′
2

)
.
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We thus have:

θ̂1 = θ10 +H−1
1

1

N

N∑
i=1

si1 +Op

(
1

T

)
+Op (Bα(K)) + op

(
1√
NT

)
,

θ̂2 = θ20 +H−1
2

1

N

N∑
i=1

si2 +Op

(
1

T

)
+Op (Bα(K)) + op

(
1√
NT

)
.

S1.3 Properties of classification based on empirical distributions

Let Fi(w) = Pr (Wit ≤ w |αi0) = G(w;αi0) denote the population cdf of Wit.
1 Similarly as in Lemma

1, the following convergence rate is achieved:

1

N

N∑
i=1

∥∥∥ĥ(k̂i)−G(·;αi0)
∥∥∥2

ω
= Op

(
1

T

)
+Op (Bα(K)) ,

provided (i) 1
N

∑N
i=1 ‖F̂i − Fi‖2ω = Op(T

−1), and (ii) G(·;αi0) is Lipschitz with respect to its second

argument. Both conditions are satisfied quite generally. For (i) a functional central limit theorem on F̂i,

together with ω being integrable, will suffice. The Lipschitz condition in (ii) will be satisfied provided
´ ∂ ln f(y,x,αi)

∂αi

∂ ln f(y,x,αi)
∂α′

i
f(y, x, αi)dydx is uniformly bounded. Here αi 7→ G(·;αi) maps individual-

specific parameters to L2(ω).

For the second step to deliver estimators with similar properties as in Theorem 1 an injectivity

condition is needed. When classifying individuals based on empirical distributions, this condition does

not impose further restrictions other than αi0 being identified. Indeed, αi 7→ G(·, αi) being injective

is equivalent to G(·, αi2) = G(·, αi1) ⇒ αi2 = αi1, which in turn is equivalent to αi0 being identified

given knowledge of the function G (hence in particular given knowledge of θ0).

S1.4 Iterated grouped fixed-effects estimator

In this subsection we consider a fully specified likelihood model, where fi(Yi, Xi) is indexed by αi0.

We have the following result for θ̂
(2)

in (10). Similar results hold for α̂(2)(k̂
(2)
i ) and average effects,

although we omit them for brevity.

Corollary S1. Let the assumptions of Theorem 1 hold. Let θ̂ be the two-step grouped fixed-effects

estimator of θ0. Then, as N,T,K tend to infinity:

θ̂
(2)

= θ̂ +Op

(
1

T

)
+Op (Bα(K)) + op

(
1√
NT

)
.

1In conditional models where the data also depends on µi0 we will write Fi(w) = G(w;αi0, µi0).
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Proof. Let δ = 1/T +Bα(K). We start by noting that, by definition of {k̂(2)
i }:

N∑
i=1

`i

(
α̂(k̂i), θ̂

)
≤

N∑
i=1

`i

(
α̂(k̂

(2)
i ), θ̂

)
≤

N∑
i=1

`i

(
α̂i, θ̂

)
.

By (A22) we have:

1

N

N∑
i=1

`i

(
α̂i, θ̂

)
− 1

N

N∑
i=1

`i

(
α̂(k̂i), θ̂

)
= Op(δ),

from which it follows that:

0 ≤ 1

N

N∑
i=1

`i

(
α̂i, θ̂

)
− 1

N

N∑
i=1

`i

(
α̂(k̂

(2)
i ), θ̂

)
= Op(δ).

Then, following the first part of the proof of Theorem 1 (using that θ̂ is consistent for θ0) we then

obtain, similarly as in (A12):

1

N

N∑
i=1

∥∥∥α̂(k̂
(2)
i )− α̂i

∥∥∥2
= Op(δ).

Hence: 1
N

∑N
i=1 ‖α̂(k̂

(2)
i )−αi0‖2 = Op (δ). This establishes that there exists a function of {k̂(2)

i } which

approximates the true αi0 on average at the desired rate.

Let us then define: a(k, θ) = α (θ, α̂ (k)). Note that:

1

N

N∑
i=1

`i

(
a(k̂

(2)
i , θ), θ

)
≤ 1

N

N∑
i=1

`i

(
α̂(2)(k̂

(2)
i , θ), θ

)
≤ 1

N

N∑
i=1

`i (α̂i(θ), θ) =
1

N

N∑
i=1

`i (αi(θ), θ)+Op

(
1

T

)
.

The rest of the proof is identical as in the proof of Theorem 1, up to a change in notation consisting

in adding (2) superscripts.

S1.5 Bias of the one-step estimator in Example 2

Write (4) in compact form as Yit = W ′itθ0 + αi0 + Uit, where Wit = (Yi,t−1, X
′
it)
′ and θ0 = (ρ0, β

′
0)′.

Pollard (1981, 1982a) provides conditions under which, for fixed K,T and as N tends to infinity,

the one-step grouped fixed-effects estimator is root-N consistent and asymptotically normal for the

minimizer θ∗ of the following population objective function:2

Q(θ) = plim
N→∞

min
(α,{ki})

1

NT

N∑
i=1

T∑
t=1

(
Yit −W ′itθ − α(ki)

)2
.

2Pollard focuses on the standard kmeans estimator, without covariates. See the supplementary appendix in

Bonhomme and Manresa (2015) for an analysis with covariates.
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Now:

Q(θ) = plim
N→∞

1

NT

N∑
i=1

T∑
t=1

(
Yit − Y i −

(
Wit −W i

)′
θ
)2

+QB(θ),

where:

QB(θ) = plim
N→∞

min
(α,{ki})

1

N

N∑
i=1

(
Y i −W

′
iθ − α(ki)

)2
.

From Theorem 6.2 in Graf and Luschgy (2000) we have, as K tends to infinity for fixed T , and

provided the density fθ of Y i −W
′
iθ is non-singular with respect to the Lebesgue measure:

QB(θ) =
1

12K2

(ˆ
[fθ(y)]

1
3 dy

)3

+ o

(
1

K2

)
.

As an example, consider the case where the Y i−W
′
iθ are i.i.d. normal with mean µ(θ) and variance

σ2(θ). Then direct calculations show that:

1

12K2

(ˆ
[fθ(y)]

1
3 dy

)3

=
π
√

3

2K2
σ2(θ).

Moreover:
∂σ2(θ)

∂θ
= 2 Var(W i)θ − 2 Cov

(
W i, Y i

)
.

This suggests that, up to an o(K−2) term, the pseudo-true value θ∗ solves:

E

[
− 1

T

T∑
t=1

(
Wit −W i

) (
Yit − Y i −

(
Wit −W i

)′
θ
)]

+
π
√

3

K2

(
Var(W i)θ − Cov

(
W i, Y i

))
= 0.

This gives:

θ∗ =

(
E

[
1

T

T∑
t=1

(
Wit −W i

) (
Wit −W i

)′]
+
π
√

3

K2
Var(W i)

)−1

×

(
E

[
1

T

T∑
t=1

(
Wit −W i

) (
Yit − Y i

)]
+
π
√

3

K2
Cov

(
W i, Y i

))
+ o

(
1

K2

)
.

Hence:

θ∗ − θ0 =

(
E

[
1

T

T∑
t=1

(
Wit −W i

) (
Wit −W i

)′]
+
π
√

3

K2
Var(W i)

)−1

×

(
E

[
1

T

T∑
t=1

(
Wit −W i

)
Uit

]
+
π
√

3

K2
Cov

(
W i, αi + U i

))
+ o

(
1

K2

)
.

As K tends to infinity θ∗ converges to the probability limit of the within estimator. The conver-

gence rate is 1/K2. Moreover, the approximation bias depends on the “between” moments Var(W i)

and Cov
(
W i, αi + U i

)
.
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S1.6 Conditions for Assumptions 7 and 8 in Example 3

Let us verify Assumptions 7 and 8 in Example 3 under the following conditions.

Assumption S2. (regularity in Example 3)

(i) Observations are i.i.d. across individuals conditional on the αi0(t)’s and µi0(t)’s. The parameter

spaces Θ for β0 and A for (αi0(t), µi0(t)′)′ are compact, and β0 belongs to the interior of Θ.

(ii) (Yit, X
′
it)
′ is stationary conditional on the αi0(t)’s. Let Vit = Xit−µi0(t). E(Uit) = 0, E(Vit) = 0,

and E(UitVit) = 0. The minimum eigenvalue of E
(
(Xit − E(Xit)) (Xit − E(Xit))

′) is bounded

away from zero. Xit have bounded support.

(iii) Let Zit = (Uit, V
′
it)
′. (Zit)i,t satisfies Definition 1.

Take hi = (Yi, X
′
i)
′. Then ϕ(αi0(t)) = (αi0(t) + µi0(t)′β0, µi0(t)′)′ is Lipschitz since β0 belongs to

a compact set. As in Example 2 it is easy to see that ϕ is injective, and that ψ is Lipschitz. Moreover,

εit = (Uit + V ′itβ0, V
′
it)
′ satisfies Definition 1 since (Uit, V

′
it)
′ is sub-Gaussian and (1, β′0)′ belongs to a

compact set. This verifies Assumptions 7.

Consider next the quasi-likelihood: `it(αi(t), β) = −1
2(Yit − X ′itβ − αi(t))2. αi(β, t) is uniquely

defined, equal to:

αi(β, t) = αi0(t) + µi0(t)′(β0 − β).

1
NT

∑N
i=1

∑T
t=1 E(`it(αi(β), β)) is a quadratic function of β. Moreover, it derivative is:

1

NT

N∑
i=1

T∑
t=1

E

(
Vit
(
Uit + V ′it(β0 − β)

))
.

This derivative is zero at β0, and the second derivative −H is negative definite by Assumption S2 (ii).

Since vαit = −1 the last part of Assumption 8 (i) follows.

Next, it is easy to check that supi,t sup(αi(t),β) |E(`it(αi(t), β))| = O(1), and similarly for the first

three derivatives of `it, since (Uit, V
′
it)
′ being sub-Gaussian implies it has finite moments at any order.

Third derivatives of `it are zero. As for second derivatives we have vαit = −1, ∂2`it
∂β∂αi(t)

= −Xit, and

∂2`it
∂β∂β′ = −XitX

′
it. Those are uniformly bounded since Xit have bounded support.

Next, we have:

E(α(t),µ(t)) (vit(αi(β, t), β)) = E(α(t),µ(t))

(
Yit −X ′itβ − αi0(t)− µi0(t)′(β0 − β)

)
= α(t)− αi0(t) + (µ(t)− µi0(t))′(β0 − β),
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so ∂
∂α(t)

∣∣
(αi0(t),µi0(t))

E(α(t),µ(t)) (vit(αi(β, t), β)) is uniformly bounded. Similar arguments end the veri-

fication of Assumption 8 (ii).

Lastly:

vit(αi(β, t), β) = Yit −X ′itβ − αi0(t)− µi0(t)′(β0 − β) = Uit + V ′it(β0 − β).

Since (1, (β0−β)′)′ is bounded and the (Uit, V
′
it)
′ satisfy Definition 1, the vector stacking all vit(αi(β, t), β)′

satisfies the sub-Gaussian requirement of Definition 1 uniformly in β. Likewise:

∂

∂β

∣∣∣∣
β0

vit (αi(β, t), β) = −Vit,

which also satisfies Definition 1.

This ends the verification of Assumption 8.
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S2 Complements to the applications

S2.1 Dynamic model of location choice

Value functions. Let us denote the integrated value function as:

V t(Si,t−1) = E
[

max
j∈{1,...,J}

Vt(j, Si,t−1) + ξit(j)

∣∣∣∣Si,t−1

]
.

By Bellman’s principle the alternative-specific value functions are:

Vt(j, Si,t−1) = E
[
ρWit(j)− c(ji,t−1, j) + βV t(Sit)

∣∣∣∣ jit = j, Si,t−1

]
,

where Sit =
(
j,J ji,t−1, αi

(
J ji,t−1

))
when jit = j, for J ji,t−1 = Ji,t−1 ∪ {j}. From the functional forms

we obtain (as in Rust, 1994):

V t(Si,t−1) = ln

 J∑
j=1

expVt(j, Si,t−1)

+ γ, (S1)

where γ ≈ .57 is Euler’s constant. Moreover:

Vt(j, Si,t−1) =

E
[
ρ exp

(
αi(j) +

σ2

2

)
− c(ji,t−1, j) + βV t

(
j,J ji,t−1, αi

(
J ji,t−1

)) ∣∣∣∣ jit = j, Si,t−1

]
, (S2)

where the expectation is taken with respect to the distribution of αi(j) given αi (Ji,t−1), conditional

on ji,t−1 and jit = j.

Computation. Computation of the solution proceeds in a recursive manner. In the case where

all locations have been visited, Jit = {1, ..., J} so Sit = (jit, {1, ..., J}, {αi(1), ..., αi(J)}). Denote the

corresponding integrated value function given most recent location j as V
J
(i, j). From (S1) and (S2)

we have:

V
J
(i, j) = ln

 J∑
j′=1

exp

[
ρ exp

(
αi(j

′) +
σ2

2

)
− c(j, j′) + βV

J
(i, j′)

]+ γ, j = 1, ..., J.

We solve this fixed-point system by successive iterations.

Consider now a case where the agent has visited s states in set J $ {1, ..., J}, and is currently at

location j. Let V
s
(i, j,J ) denote her integrated value function. The latter solves:

V
s
(i, j,J ) = ln

(∑
j′ /∈J

exp

[
EJ ,j,j′

(
ρ exp

(
αi(j

′) +
σ2

2

)
− c(j, j′) + βV

s+1
(i, j′,J j′)

)]

+
∑
j′∈J

exp

[
ρ exp

(
αi(j

′) +
σ2

2

)
− c(j, j′) + βV

s
(i, j′,J )

])
+ γ,
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where EJ ,j,j′ is taken with respect to the distribution of αi(j
′) given αi(J ), conditional on moving

from j to j′. In practice we discretize the values of each αi(j) on a 50-point grid. In the computation

of the fixed points we set a 10−11 numerical tolerance.

Estimation. The choice probabilities entering the likelihood are given by an estimated counterpart

to (18), where the estimated value functions V̂t

(
j, ji,t−1,Ji,t−1, α̂(k̂i,Ji,t−1), θ

)
solve the system (S1)-

(S2). We estimate the conditional expectation in (S2) as a conditional mean given α̂(k̂i,Ji,t−1), based

on all job movers from Ji,t−1 to jit = j. Nonparametric or semi-parametric methods could be used

for this purpose. We experimented with both a Nadaraya Watson kernel estimator and a polynomial

series estimator. We use an exponential regression estimator in the illustration.

Iteration. To perform the iteration, we first estimate the idiosyncratic variance of log-wages σ2 as:

σ̂2 =
1

NT

N∑
i=1

T∑
t=1

(
lnWit − α̂(k̂i, jit)

)2
. (S3)

Then, individual groups are assigned as:

k̂
(2)
i = argmax

k∈{1,...,K}

T∑
t=1

J∑
j=1

1{jit = j}

(
ln Pr

(
jit = j | ji,t−1,Ji,t−1, α̂(k,Ji,t−1), θ̂

)

+ lnφ(lnWit; α̂(k, j), σ̂2)

)
,

where φ denotes the normal density. Note that information on both wages and choices is used to

reclassify individuals.

Given group assignments, parameters can be updated as:

α̂(2)(k, j) =

∑N
i=1

∑T
t=1 1{k̂

(2)
i = k}1{jit = j} lnWit∑N

i=1

∑T
t=1 1{k̂

(2)
i = k}1{jit = j}

,

with an update for σ2 analogous to (S3), and:

θ̂
(2)

= argmax
θ

N∑
i=1

T∑
t=1

J∑
j=1

1{jit = j} ln Pr
(
jit = j | ji,t−1,Ji,t−1, α̂

(2)(k̂
(2)
i ,Ji,t−1), θ

)
.

This procedure may be iterated further. Note that in the update step we do not maximize the

full likelihood as a function of parameters α, σ2, θ. Rather, we use a partial likelihood estimator by

which we first estimate wage parameters α and σ2, and then estimate utility and cost parameters θ.

We use this approach for computational reasons; see Rust (1994) and Arcidiacono and Jones (2003)
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for related approaches. In Section S1 we study properties of two-step grouped fixed-effects in a partial

likelihood setting.

S2.2 Dynamic model of location choice: additional results

In this subsection we show additional estimation results for the illustration in Section 6.

Fixed-K grouped fixed-effects: results. We start by reporting results based on fixed values

of K, from K = 2 to K = 8, in Figure S1. We see that taking K = 2 yields imprecise estimates, in

particular for ρ. In comparison, taking K = 4, K = 6 or K = 8 results in better performance. The

most accurate results are obtained taking K = 6 or K = 8 and using bias reduction and one or three

iterations. Those results are close to the ones using our method to select K (see Figure 3, where the

average value for K̂ is 7).

Fixed-effects estimation: results. In this DGP, fixed-effects estimation is computationally

tractable. This is due to the fact that the α’s and the structural parameters can be estimated se-

quentially. One fixed-effects estimation of the structural parameters is about 2.5 times slower than

one estimation of the model with 7 groups (the average value of K̂), although it becomes 9 times

slower in a sample with 10 times as many individuals. The results for the fixed-effects estimator,

and the bias-reduced fixed-effects estimator based on the half-panel jackknife method of Dhaene and

Jochmans (2015), are shown in Figure S2. We see that the results do not differ markedly from the

grouped fixed-effects results in Figure 3, consistently with Theorem 1.

EM algorithm: results. As a comparison, we next report the results of random-effects estimation

based a finite mixture with K = 2, K = 4, and K = 8 types, respectively. We use the EM algorithm of

Arcidiacono and Jones (2003), where wage-specific parameters and structural parameters are estimated

sequentially in each M-step of the algorithm. Setting a tolerance of 10−6 on the change in the likelihood,

the algorithm stops after 27, 67, and 294 iterations with K = 2, K = 4, and K = 8 types, respectively.

Estimation is substantially more time-consuming than when using two-step grouped fixed-effects. The

results in Figure S3 show that the estimates with K = 2 types are severely biased, and have large

variances. The quality of estimation improves substantially when taking K = 8 groups. In the latter

case, performance seems roughly comparable to the bias-corrected two-step results shown in Figure 3.
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S2.3 Firm and worker heterogeneity: estimation

Following Bonhomme et al. (2015) we exploit the following restrictions, where we denote as mi =

1{j(i, 1) 6= j(i, 2)} the job mobility indicator. For job movers, using the fact that mobility does not

depend on ε’s, and that εi1 is independent of εi2, we have:

E (Yi2 − Yi1 |mi = 1, j(i, 1), j(i, 2)) = ψj(i,2) − ψj(i,1), (S4)

Var (Yi2 − Yi1 |mi = 1, j(i, 1), j(i, 2)) = Var (εi2) + Var (εi1) = 2 s2. (S5)

Then, in the first cross-section we have:

E (Yi1 | j(i, 1)) = ψj(i,1) + E (ηi | j(i, 1)) = ψj(i,1) + µj(i,1), (S6)

Var (Yi1 | j(i, 1)) = Var (ηi | j(i, 1)) + Var (εi1) = σ2
j(i,1) + s2. (S7)

In estimation, we first compute a firm partition {k̂j} into K groups based on firm-specific empirical

distributions of log-wages (evaluated at 20 points). In the second step, we use the following algorithm:

1. Compute ψ̂(k̂j) based on sample counterparts to (S4).

2. Compute ŝ2 based on (S5).

3. Given ψ̂(k̂j), compute µ̂(k̂j) based on (S6).

4. Given ŝ2, compute σ̂2(k̂j) based on (S7). In practice we impose non-negativity of the variances

using a quadratic programming routine.

Given parameter estimates, we then estimates the variances and covariance in (22) by aggregation

across types.

The fixed-effects estimator in Table 1 is computed following the same algorithm, except that K is

taken equal to N . Hence, the estimates of the firm effects ψj correspond to the estimator of Abowd

et al. (1999). However, instead of relying on a fixed-effects approach on the worker side, in this

two-period setting we rely on a correlated random-effects approach to deal with worker heterogeneity.

In that specification, the mean and variance of worker effects ηi are firm-specific.3

S2.4 Firm and worker heterogeneity: additional results

In this part of the supplementary appendix we report the results for additional DGPs.

3We compute the connected set in an initial step, and use sparse matrix coding for efficient computation.
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Monte Carlo designs. We consider four additional DGPs, in addition to DGP1 reported in Table

1. In Table S1 we show the sample sizes that we use in all designs, including the average number of

job movers per firm. DGP2 has one-dimensional underlying heterogeneity, with different parameter

values: the variance of firm effects is larger than in DGP1, while the correlation between firm effects

and worker effects is smaller, the relative magnitudes being close to the AKM estimates of Card et al.

(2013). DGP3 and DGP4 have two-dimensional underlying heterogeneity (ψj , Vj), where ψj is the wage

firm effect and Vj drives workers’ firm choice. (ψj , Vj) are drawn from a bivariate normal distribution,

and the mean and variance of worker effects in the firm are set to µj = Vj and σ2
j = (a + bVj)

2 for

some constants a, b which are calibrated to the Swedish sample. We interpret Vj as a present value

driving workers’ mobility decisions across firms, which may be only imperfectly correlated with ψj

in the presence of non-pecuniary attributes valued by workers (as in Sorkin, 2016). As displayed in

Table S2, the two-dimensional DGPs differ in terms of parameter values.4 Lastly, DGP5 has discrete

heterogeneity. Specifically, there are K∗ = 10 “true” groups in the population. The groups are chosen

by approximating the firm heterogeneity of DGP1.

Alternative DGP with one-dimensional heterogeneity: results. In Table S3 we report

the results of two-step grouped fixed-effects and its bias-corrected version, as well as fixed-effects, in

DGP2 with one-dimensional heterogeneity and a larger variance of firm effects than in Table 1. The

performance of the estimators is comparable to Table 1.

Bias-corrected fixed-effects. In Table S4 we report the results of bias-corrected fixed-effects

estimation in DGP1 (top panel, see Table 1) and DGP2 (bottom panel). In order to implement the

bias correction we use the half-panel jackknife of Dhaene and Jochmans (2015), splitting all workers

in every firm into two random halves, including job movers. We see that, although bias correction

improves relative to fixed-effects, the bias-corrected estimator is still substantially biased, even for

moderately large firms.5

Inferring the underlying dimension of firm heterogeneity. As a motivation for consid-

ering DGPs with an underlying dimension higher than one, but still relatively low, we first attempt

4The last row of the table shows the correlation between the wage firm effect ψj and the present value Vj in

all DGPs.
5Notice that some of the variance estimates are in fact negative. This is due to the fact that the additive

bias correction method does not enforce non-negativity.
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to learn the underlying dimension of firm heterogeneity on the Swedish matched employer-employee

data set used in Section 7. In statistics, the literature on manifold learning aims at inferring the low

intrinsic dimension of large dimensional data; see for example Levina and Bickel (2004) and Raginsky

and Lazebnik (2005). Motivated by the method for selecting the number of groups outlined in Subsec-

tion 4.2, the method we use here consists in comparing the length of the panel T with the number of

groups K̂ estimated from (12). If the underlying dimension of ϕ(αi0) is d > 0, then we expect Q̂(K)

to decrease at a rate Op(K
− 2
d ) + op(T

−1). This suggests that K̂
2
d and T will have a similar order of

magnitude. In such a case the underlying dimension may be inferred by plotting the relationship, for

panels of different lengths, between ln K̂ and lnT , the slope of which is 2/d̂.

In Figure S4 we report the results of this exercise, taking firms with more than 50 employees, and

then randomly selecting x% in each firm, where x varies between 5 and 100. The left graph shows

the shape of the objective function Q̂(K) as a function of K, in logs. In each sample the estimated

number of groups K̂ lies at the intersection of that curve and the horizontal line ln(V̂h/T ).6 On the

right graph we then plot ln K̂ against the logarithm of the average firm size in each sample.7 We

see that the relationship is approximately linear and the slope is close to one, suggesting that the

underlying dimension is around d̂ = 2.

Two-dimensional heterogeneity: results. In Table S5 we report the simulation results for

DGP3 with continuous two-dimensional firm heterogeneity. The results for DGP4, with a smaller

variance of firm effects, are reported in Table S7. The results are shown graphically in Figures S5 and

S6. Focusing on the first panel, which corresponds to our recommended choice for the selection rule

of the number of groups (that is, taking ξ = 1 in (12)), we see that the two-step estimators show more

substantial biases than in the one-dimensional case, especially for the variance of firm effects and the

correlation parameter. Moreover, bias correction does not succeed at reducing the bias substantially.

This suggests that, for the selected number of groups, the approximation bias is still substantial. At

the same time, as shown by the two bottom panels of the tables, taking ξ = .5 and ξ = .25 improves the

performance of the two-step estimator.8 Performance is further improved when using the bias-reduced

6We use a slight modification of the V̂h formula to deal with the fact that here the “panel” is unbalanced,

since different firms may have different sizes.
7Here we report results based on empirical cdfs of log-wages evaluated at 20 points. We checked that using

40 points instead did not affect the results.
8Notice that while the selected number of groups K̂ is monotone in firm size for ξ = 1 and ξ = .5, it is not

monotone for ξ = .25. This is a finite sample issue: when taking ξ = .25 and focusing on large firms the number
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estimator.

As pointed out in Section 4, features of the model may be exploited to improve the classification.

In the two-dimensional designs DGP3 and DGP4, we perform the following moment-based iteration.

The two-step method delivers estimates of the mean and variance of worker effects ηi in firm group

k̂j : µ̂(k̂j) and σ̂2(k̂j), respectively. Regressing

√
σ̂2(k̂j) on µ̂(k̂j) and a constant then gives estimates

b̂ and â. Given those, we construct the (iterated) moments:

h1j = Ê(Yi1 | j)−

√
V̂ar(Yi1 | j)− ŝ2 − â

b̂
, h2j =

√
V̂ar(Yi1 | j)− ŝ2 − â

b̂
,

where Ê and V̂ar denote firm-specific means and variances. Those moments will be consistent for

ψj and Vj , respectively, as T tends to infinity. We then apply two-step grouped fixed-effects to the

moments h1j and h2j . In Tables S7 and S8 we report the results for the iterated estimator (only

iterated once) and its bias-corrected version, for DGP3 and DGP4, respectively. We see that the

iteration improves performance substantially for DGP3, although it has small effects on performance

in DGP4.

Low mobility bias and regularization. As shown by Theorem 2, a benefit of discretizing

unobserved heterogeneity is that it can reduce the incidental parameter bias of fixed-effects estima-

tors. In the illustration on matched employer-employee data, fixed-effects estimators may be biased

due to low rates of worker mobility between firms. In order to assess the impact of mobility rates

on the performance of fixed-effects and grouped fixed-effects estimators, in Figures S7 and S8 we re-

port the results of the estimated variance decomposition on 500 simulations, comparing fixed-effects,

bias-corrected fixed-effects, two-step grouped fixed-effects with bias correction, and iterated two-step

grouped fixed-effects with bias correction. We perform simulations for different number of job movers

per firm, from 2 to 10 (shown on the x-axis), and a fixed firm size of 50. The two figures show the

results for the two-dimensional DGPs: DGP3 and DGP4, respectively. We see a striking difference

between fixed-effects and grouped fixed-effects: while the former is very sensitive to the number of job

movers, the latter is virtually insensitive. In particular, for low numbers of job movers fixed-effects

and its bias-corrected counterpart are severely biased, while the biases of grouped fixed-effects remain

moderate. This is in line with Theorem 2. It is worth noting that the average number of job movers

per firm is around 0.5 in the original Swedish sample. This suggests that, at least in short panels, the

of groups is no longer negligible with respect to the number of firms in the sample.
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discrete regularization achieved in grouped fixed-effects may result in practical improvements relative

to fixed-effects in data sets of realistic dimensions.

Discrete heterogeneity: results. Finally, in Table S9 we report results for a discrete DGP

(DGP5) where all firm population parameters are constant within groups k̂j , with K∗ = 10. In this

case the results of two-step grouped fixed-effects with K = K∗ turn out to be quite similar to those

obtained in the continuous DGP in Table 1. However, as the last column in the table shows, in this

discrete DGP misclassification frequencies are sizable: 69% misclassification when firm size equals 10,

and still 23% when size is 100.9 This suggests that, for this DGP, an “oracle” asymptotic theory based

on the premise that group misclassification is absent in the limit may not provide reliable guidance for

finite sample inference, even when the true number of groups is known. Lastly, the table shows some

evidence that bias correction (where the number of groups is estimated in every simulation) improves

the performance of the estimator in this setting too.

9We computed misclassification frequencies by solving a linear assignment problem using the simplex algo-

rithm in every simulation.
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Table S1: Firm and worker effects, sample sizes

Firm size Number firms Number job movers

per firm

10 10000 2

20 5000 4

50 2000 10

100 1000 20

200 500 40

Notes: Sample sizes for different firm sizes, all DGPs.

Table S2: Different DGPs

small V ar(ψ) large V ar(ψ)

1D 2D 1D 2D

V ar(ψ) 0.0017 0.0017 0.0204 0.0204
2.0% 2.0% 21.2% 21.2%

V ar(η) 0.0758 0.0758 0.0660 0.0660
85.2% 85.2% 68.4% 68.4%

Cov(ψ, η) 0.0057 0.0057 0.0050 0.0050
12.8% 12.8% 10.4% 10.4%

Corr(ψ, η) 0.4963 0.4963 0.1373 0.1373
V ar(ε) 0.0341 0.0341 0.0341 0.0341

Corr(V, ψ) 1.0000 0.7130 1.0000 0.2540

Notes: The four columns show the parameter values and overall shares of variance in DGP1, DGP4,

DGP2, and DGP3, respectively.
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Table S3: Estimates of firm and worker heterogeneity across simulations, one-dimensional firm

heterogeneity, large variance of firm effects

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values

- 0.0660 0.0204 0.0050 0.1373 0.0341

two-step estimator

10 0.0605 0.0124 0.0078 0.2868 0.0422 3.0
[0.059,0.062] [0.012,0.013] [0.008,0.008] [0.275,0.300] [0.041,0.043] [3,3]

20 0.0626 0.0155 0.0068 0.2178 0.0392 4.0
[0.061,0.064] [0.015,0.016] [0.006,0.007] [0.205,0.230] [0.038,0.040] [4,4]

50 0.0645 0.0180 0.0058 0.1714 0.0365 6.0
[0.063,0.066] [0.017,0.019] [0.005,0.006] [0.158,0.183] [0.036,0.037] [6,6]

100 0.0653 0.0191 0.0054 0.1542 0.0354 8.0
[0.064,0.066] [0.018,0.020] [0.005,0.006] [0.141,0.166] [0.035,0.036] [8,8]

200 0.0657 0.0198 0.0052 0.1448 0.0348 10.9
[0.065,0.067] [0.019,0.021] [0.005,0.006] [0.132,0.157] [0.034,0.035] [10,12]

two-step estimator, bias-corrected

10 0.0650 0.0149 0.0056 0.1445 0.0397
[0.064,0.066] [0.014,0.016] [0.005,0.006] [0.127,0.163] [0.039,0.041]

20 0.0647 0.0185 0.0057 0.1499 0.0361
[0.063,0.066] [0.018,0.019] [0.005,0.006] [0.133,0.167] [0.035,0.037]

50 0.0656 0.0202 0.0053 0.1416 0.0344
[0.064,0.067] [0.019,0.021] [0.005,0.006] [0.126,0.155] [0.034,0.035]

100 0.0661 0.0202 0.0050 0.1371 0.0344
[0.065,0.067] [0.019,0.021] [0.005,0.005] [0.122,0.150] [0.034,0.035]

200 0.0661 0.0204 0.0050 0.1361 0.0342
[0.065,0.067] [0.020,0.021] [0.005,0.005] [0.123,0.149] [0.033,0.035]

fixed-effects estimator

10 0.1252 0.0528 -0.0273 -0.3357 0.0173
[0.123,0.127] [0.051,0.055] [-0.029,-0.026] [-0.346,-0.324] [0.017,0.018]

20 0.0908 0.0318 -0.0063 -0.1165 0.0256
[0.090,0.092] [0.031,0.033] [-0.007,-0.006] [-0.127,-0.105] [0.025,0.026]

50 0.0752 0.0242 0.0013 0.0301 0.0307
[0.074,0.076] [0.023,0.025] [0.001,0.002] [0.019,0.041] [0.030,0.031]

100 0.0705 0.0222 0.0033 0.0827 0.0324
[0.069,0.072] [0.021,0.023] [0.003,0.004] [0.071,0.095] [0.032,0.033]

200 0.0683 0.0213 0.0041 0.1085 0.0333
[0.067,0.069] [0.021,0.022] [0.004,0.005] [0.096,0.120] [0.033,0.034]

Notes: See notes to Table 1. Results for DGP2.

19



Table S4: Bias-corrected fixed-effects estimators, one-dimensional firm heterogeneity

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1)

one-dimensional, small firm effect

- 0.0758 0.0017 0.0057 0.4963 0.0341

fixed-effects, bias-corrected

10 0.0065 -0.0717 0.0791 -0.0976 0.0300
[-0.004,0.016] [-0.082,-0.064] [0.071,0.089] [-0.125,-0.072] [0.029,0.031]

20 0.0645 -0.0098 0.0172 0.0973 0.0339
[0.062,0.067] [-0.011,-0.008] [0.016,0.019] [0.073,0.125] [0.033,0.035]

50 0.0733 -0.0007 0.0082 0.3069 0.0341
[0.072,0.075] [-0.001,-0.000] [0.008,0.009] [0.279,0.335] [0.033,0.035]

100 0.0748 0.0007 0.0067 0.4173 0.0341
[0.073,0.076] [0.000,0.001] [0.006,0.007] [0.388,0.447] [0.033,0.035]

200 0.0753 0.0012 0.0062 0.4822 0.0341
[0.074,0.077] [0.001,0.002] [0.006,0.007] [0.451,0.512] [0.033,0.035]

one-dimensional, large firm effect

- 0.0660 0.0204 0.0050 0.1373 0.0341

fixed-effects, bias-corrected

10 -0.0036 -0.0533 0.0788 -0.0077 0.0301
[-0.013,0.006] [-0.062,-0.045] [0.070,0.088] [-0.034,0.019] [0.029,0.031]

20 0.0547 0.0089 0.0166 0.1163 0.0339
[0.053,0.057] [0.007,0.011] [0.015,0.018] [0.096,0.137] [0.033,0.035]

50 0.0636 0.0180 0.0075 0.1561 0.0341
[0.062,0.065] [0.017,0.019] [0.007,0.008] [0.139,0.173] [0.033,0.035]

100 0.0650 0.0194 0.0061 0.1554 0.0341
[0.064,0.066] [0.019,0.020] [0.006,0.007] [0.139,0.171] [0.033,0.035]

200 0.0656 0.0199 0.0055 0.1487 0.0341
[0.064,0.067] [0.019,0.021] [0.005,0.006] [0.133,0.164] [0.033,0.035]

Notes: Means and 95% confidence intervals. Unobserved heterogeneity is continuously distributed in

the DGP. Bias correction is based on splitting both job movers and job stayers into two sub-samples.

The top panel shows the results on DGP1, with a small variance of firm effects, while the bottom panel

shows the results for DGP2, with a larger variance of firm effects. 500 simulations.
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Table S5: Firm and worker effects, two-dimensional firm heterogeneity, large V ar(ψ), different choices of ξ

two-step estimator two-step estimator, bias corrected

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂ Var (ηi) Var

(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values true values

- 0.0660 0.0204 0.0050 0.1373 0.0341 0.0660 0.0204 0.0050 0.1373 0.0341

ξ = 1.0 ξ = 1.0

10 0.0513 0.0098 0.0124 0.5500 0.0448 4.0 0.0529 0.0112 0.0115 0.4574 0.0434 4.2
[0.050,0.053] [0.009,0.010] [0.012,0.013] [0.539,0.563] [0.044,0.045] [4,4] [0.050,0.055] [0.010,0.012] [0.011,0.012] [0.437,0.486] [0.042,0.044] [4,5]

20 0.0515 0.0112 0.0124 0.5180 0.0433 5.7 0.0514 0.0126 0.0125 0.4856 0.0420 7.4
[0.049,0.053] [0.010,0.012] [0.012,0.013] [0.498,0.536] [0.042,0.044] [5,6] [0.049,0.053] [0.011,0.014] [0.012,0.013] [0.454,0.509] [0.041,0.043] [6,8]

50 0.0514 0.0123 0.0124 0.4939 0.0423 8.9 0.0513 0.0131 0.0125 0.4797 0.0415 11.8
[0.049,0.054] [0.012,0.013] [0.012,0.013] [0.471,0.512] [0.041,0.043] [8,9] [0.049,0.054] [0.012,0.014] [0.012,0.013] [0.451,0.505] [0.041,0.043] [10,12]

100 0.0519 0.0128 0.0124 0.4796 0.0416 13.3 0.0520 0.0133 0.0123 0.4664 0.0411 17.9
[0.049,0.054] [0.012,0.014] [0.012,0.013] [0.453,0.503] [0.041,0.043] [13,14] [0.049,0.055] [0.013,0.014] [0.011,0.013] [0.436,0.496] [0.040,0.042] [17,20]

200 0.0548 0.0147 0.0104 0.3683 0.0399 21.4 0.0579 0.0165 0.0089 0.2713 0.0381 30.1
[0.051,0.058] [0.014,0.016] [0.009,0.012] [0.303,0.426] [0.039,0.041] [20,23] [0.053,0.062] [0.015,0.018] [0.006,0.011] [0.168,0.374] [0.037,0.040] [28,33]

ξ = 0.5 ξ = 0.5

10 0.0498 0.0110 0.0134 0.5730 0.0435 12.8 0.0386 0.0126 0.0123 0.5385 0.0419 14.0
[0.048,0.053] [0.010,0.012] [0.013,0.014] [0.555,0.589] [0.043,0.044] [12,13] [0.031,0.046] [0.012,0.013] [0.012,0.013] [0.494,0.578] [0.041,0.043] [12,15]

20 0.0510 0.0123 0.0125 0.4997 0.0423 16.1 0.0520 0.0136 0.0116 0.4297 0.0410 19.7
[0.049,0.052] [0.012,0.013] [0.012,0.013] [0.482,0.519] [0.041,0.043] [16,17] [0.049,0.054] [0.013,0.014] [0.011,0.012] [0.402,0.460] [0.040,0.042] [19,22]

50 0.0536 0.0140 0.0113 0.4134 0.0407 26.0 0.0556 0.0152 0.0104 0.3484 0.0394 34.4
[0.052,0.056] [0.013,0.015] [0.011,0.012] [0.389,0.437] [0.040,0.042] [24,28] [0.053,0.058] [0.015,0.016] [0.010,0.011] [0.312,0.378] [0.039,0.040] [30,38]

100 0.0563 0.0153 0.0099 0.3371 0.0392 38.8 0.0589 0.0168 0.0086 0.2635 0.0377 52.9
[0.053,0.059] [0.014,0.016] [0.009,0.011] [0.300,0.376] [0.038,0.040] [36,41] [0.056,0.062] [0.016,0.018] [0.007,0.010] [0.205,0.314] [0.036,0.039] [48,57]

200 0.0596 0.0171 0.0085 0.2662 0.0375 53.2 0.0626 0.0187 0.0070 0.1948 0.0359 71.8
[0.056,0.063] [0.016,0.018] [0.007,0.010] [0.214,0.314] [0.037,0.039] [49,57] [0.058,0.067] [0.018,0.020] [0.005,0.009] [0.129,0.247] [0.035,0.037] [65,78]

ξ = 0.25 ξ = 0.25

10 0.0595 0.0119 0.0132 0.4988 0.0428 125.6 0.0504 0.0136 0.0117 0.4379 0.0411 152.6
[0.058,0.062] [0.011,0.013] [0.013,0.014] [0.477,0.514] [0.042,0.043] [121,130] [0.047,0.054] [0.013,0.014] [0.011,0.012] [0.400,0.465] [0.040,0.042] [145,160]

20 0.0567 0.0134 0.0119 0.4318 0.0412 138.3 0.0536 0.0149 0.0106 0.3677 0.0397 163.7
[0.055,0.058] [0.013,0.014] [0.011,0.012] [0.409,0.447] [0.040,0.042] [132,143] [0.051,0.057] [0.014,0.016] [0.010,0.011] [0.335,0.394] [0.039,0.040] [153,172]

50 0.0574 0.0155 0.0099 0.3316 0.0391 154.0 0.0582 0.0170 0.0085 0.2622 0.0376 190.1
[0.055,0.059] [0.015,0.016] [0.009,0.011] [0.300,0.357] [0.038,0.040] [146,163] [0.055,0.061] [0.016,0.018] [0.007,0.009] [0.217,0.301] [0.037,0.039] [177,204]

100 0.0601 0.0171 0.0083 0.2598 0.0374 151.1 0.0624 0.0186 0.0069 0.1932 0.0359 186.1
[0.057,0.063] [0.016,0.018] [0.007,0.010] [0.222,0.303] [0.037,0.038] [142,163] [0.059,0.066] [0.018,0.019] [0.006,0.008] [0.151,0.240] [0.035,0.037] [172,202]

200 0.0626 0.0186 0.0069 0.2027 0.0361 133.7 0.0649 0.0199 0.0056 0.1512 0.0348 162.3
[0.058,0.066] [0.018,0.020] [0.005,0.009] [0.156,0.251] [0.035,0.037] [127,141] [0.060,0.069] [0.019,0.021] [0.004,0.007] [0.095,0.205] [0.034,0.036] [151,176]

Notes: Means and 95% confidence intervals. Unobserved heterogeneity is continuously distributed in the DGP, with underlying dimension

equal to 2. The number of groups K is estimated in every replication, with different choices for ξ in (12). 500 simulations. Results for

DGP3.
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Table S6: Firm and worker effects, two-dimensional firm heterogeneity, small V ar(ψ), different choices of ξ

two-step estimator two-step estimator, bias corrected

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂ Var (ηi) Var

(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values true values

- 0.0758 0.0017 0.0057 0.4963 0.0341 0.0758 0.0017 0.0057 0.4963 0.0341

ξ = 1.0 ξ = 1.0

10 0.0759 0.0008 0.0056 0.7010 0.0350 4.0 0.0760 0.0009 0.0056 0.6487 0.0349 4.0
[0.074,0.078] [0.001,0.001] [0.005,0.006] [0.691,0.709] [0.034,0.036] [4,4] [0.074,0.078] [0.001,0.001] [0.005,0.006] [0.636,0.660] [0.034,0.036] [4,4]

20 0.0754 0.0009 0.0059 0.6927 0.0349 5.5 0.0749 0.0011 0.0061 0.6846 0.0348 6.9
[0.073,0.077] [0.001,0.001] [0.005,0.006] [0.680,0.707] [0.034,0.036] [5,6] [0.073,0.077] [0.001,0.001] [0.006,0.007] [0.666,0.705] [0.034,0.035] [6,8]

50 0.0750 0.0011 0.0061 0.6877 0.0348 8.0 0.0747 0.0011 0.0062 0.6841 0.0347 10.0
[0.073,0.078] [0.001,0.001] [0.006,0.007] [0.674,0.701] [0.034,0.035] [8,8] [0.072,0.078] [0.001,0.001] [0.006,0.007] [0.669,0.701] [0.034,0.035] [10,10]

100 0.0752 0.0011 0.0062 0.6848 0.0347 11.1 0.0750 0.0011 0.0063 0.6816 0.0347 14.2
[0.072,0.079] [0.001,0.001] [0.006,0.007] [0.668,0.701] [0.034,0.035] [11,12] [0.072,0.078] [0.001,0.001] [0.006,0.007] [0.660,0.702] [0.034,0.035] [14,16]

200 0.0746 0.0011 0.0062 0.6765 0.0347 15.2 0.0745 0.0012 0.0062 0.6720 0.0347 19.3
[0.069,0.079] [0.001,0.001] [0.006,0.007] [0.654,0.697] [0.034,0.035] [14,16] [0.069,0.079] [0.001,0.001] [0.006,0.007] [0.647,0.694] [0.034,0.035] [17,21]

ξ = 0.5 ξ = 0.5

10 0.0748 0.0010 0.0062 0.7333 0.0349 12.2 0.0731 0.0011 0.0062 0.6905 0.0348 12.7
[0.073,0.076] [0.001,0.001] [0.006,0.007] [0.720,0.746] [0.034,0.036] [12,13] [0.070,0.076] [0.001,0.001] [0.006,0.007] [0.664,0.715] [0.034,0.035] [12,14]

20 0.0747 0.0010 0.0062 0.7076 0.0348 15.1 0.0746 0.0011 0.0063 0.6814 0.0347 18.0
[0.073,0.076] [0.001,0.001] [0.006,0.007] [0.696,0.717] [0.034,0.035] [15,16] [0.073,0.076] [0.001,0.001] [0.006,0.007] [0.664,0.695] [0.034,0.035] [18,20]

50 0.0744 0.0011 0.0062 0.6858 0.0347 21.6 0.0744 0.0012 0.0062 0.6717 0.0347 27.0
[0.072,0.077] [0.001,0.001] [0.006,0.007] [0.671,0.700] [0.034,0.035] [20,23] [0.072,0.077] [0.001,0.001] [0.006,0.007] [0.643,0.691] [0.034,0.035] [24,30]

100 0.0743 0.0011 0.0062 0.6709 0.0347 28.2 0.0743 0.0012 0.0062 0.6584 0.0347 35.7
[0.071,0.078] [0.001,0.001] [0.006,0.007] [0.649,0.690] [0.034,0.035] [26,31] [0.071,0.078] [0.001,0.001] [0.006,0.007] [0.626,0.684] [0.034,0.035] [32,40]

200 0.0751 0.0012 0.0062 0.6542 0.0347 35.0 0.0751 0.0012 0.0062 0.6409 0.0346 44.0
[0.071,0.079] [0.001,0.001] [0.006,0.007] [0.631,0.683] [0.034,0.035] [31,39] [0.071,0.080] [0.001,0.001] [0.006,0.007] [0.603,0.681] [0.034,0.035] [38,50]

ξ = 0.25 ξ = 0.25

10 0.0796 0.0012 0.0062 0.6355 0.0346 124.3 0.0699 0.0013 0.0061 0.6190 0.0345 148.7
[0.078,0.082] [0.001,0.001] [0.006,0.007] [0.605,0.657] [0.034,0.035] [121,127] [0.066,0.073] [0.001,0.002] [0.006,0.007] [0.566,0.658] [0.034,0.035] [142,154]

20 0.0758 0.0013 0.0061 0.6242 0.0346 131.0 0.0721 0.0014 0.0060 0.6086 0.0345 150.3
[0.074,0.078] [0.001,0.001] [0.006,0.007] [0.602,0.643] [0.034,0.035] [125,137] [0.070,0.074] [0.001,0.002] [0.006,0.006] [0.567,0.647] [0.034,0.035] [140,160]

50 0.0752 0.0014 0.0061 0.6020 0.0345 134.7 0.0749 0.0014 0.0060 0.5800 0.0344 159.0
[0.072,0.077] [0.001,0.002] [0.006,0.007] [0.572,0.624] [0.034,0.035] [127,142] [0.072,0.077] [0.001,0.002] [0.006,0.006] [0.529,0.622] [0.034,0.035] [146,171]

100 0.0752 0.0014 0.0061 0.5879 0.0345 125.1 0.0752 0.0015 0.0060 0.5651 0.0344 146.7
[0.072,0.078] [0.001,0.002] [0.006,0.006] [0.562,0.614] [0.034,0.035] [116,132] [0.072,0.078] [0.001,0.002] [0.006,0.006] [0.516,0.611] [0.034,0.035] [132,158]

200 0.0754 0.0014 0.0060 0.5781 0.0344 105.4 0.0755 0.0015 0.0060 0.5569 0.0344 121.7
[0.071,0.079] [0.001,0.002] [0.005,0.007] [0.545,0.606] [0.034,0.035] [99,113] [0.071,0.079] [0.001,0.002] [0.005,0.006] [0.498,0.604] [0.034,0.035] [107,134]

Notes: Means and 95% confidence intervals. Unobserved heterogeneity is continuously distributed in the DGP, with underlying dimension

equal to 2. The number of groups K is estimated in every replication, with different choices for ξ in (12). 500 simulations. Results for

DGP4.
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Table S7: Firm and worker effects, two-dimensional firm heterogeneity, large V ar(ψ), different choices of ξ, iterated estimators

iterated estimator iterated estimator, bias corrected

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂ Var (ηi) Var

(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values true values

- 0.0660 0.0204 0.0050 0.1373 0.0341 0.0660 0.0204 0.0050 0.1373 0.0341

ξ = 1.0 ξ = 1.0

10 0.0661 0.0045 0.0050 0.2847 0.0501 4.0 0.0592 0.0079 0.0084 0.4058 0.0468 4.2
[0.063,0.073] [0.002,0.006] [0.001,0.006] [0.115,0.329] [0.049,0.053] [4,4] [0.055,0.073] [0.003,0.010] [0.001,0.010] [0.085,0.482] [0.045,0.052] [4,5]

20 0.0632 0.0080 0.0066 0.2928 0.0466 5.7 0.0592 0.0117 0.0085 0.3192 0.0429 7.4
[0.061,0.065] [0.007,0.009] [0.006,0.007] [0.265,0.319] [0.046,0.048] [5,6] [0.055,0.063] [0.010,0.014] [0.007,0.011] [0.257,0.421] [0.040,0.045] [6,8]

50 0.0608 0.0127 0.0077 0.2785 0.0420 8.9 0.0589 0.0163 0.0086 0.2702 0.0383 11.8
[0.058,0.064] [0.012,0.013] [0.007,0.009] [0.251,0.312] [0.041,0.043] [8,9] [0.056,0.062] [0.015,0.017] [0.007,0.010] [0.222,0.316] [0.037,0.040] [10,12]

100 0.0617 0.0152 0.0074 0.2424 0.0392 13.3 0.0624 0.0179 0.0071 0.2044 0.0366 17.9
[0.059,0.065] [0.014,0.016] [0.006,0.009] [0.207,0.286] [0.038,0.040] [13,14] [0.059,0.065] [0.017,0.019] [0.006,0.009] [0.158,0.256] [0.036,0.038] [17,20]

200 0.0628 0.0174 0.0064 0.1932 0.0371 21.4 0.0642 0.0196 0.0057 0.1552 0.0350 30.1
[0.059,0.066] [0.017,0.018] [0.004,0.008] [0.139,0.242] [0.036,0.038] [20,23] [0.061,0.068] [0.018,0.021] [0.004,0.008] [0.098,0.210] [0.034,0.036] [28,33]

ξ = 0.5 ξ = 0.5

10 0.0549 0.0093 0.0106 0.4708 0.0452 12.8 0.0473 0.0141 0.0144 0.5393 0.0404 14.0
[0.053,0.057] [0.009,0.010] [0.010,0.011] [0.451,0.489] [0.044,0.046] [12,13] [0.038,0.053] [0.012,0.017] [0.012,0.018] [0.433,0.684] [0.037,0.042] [12,15]

20 0.0555 0.0117 0.0102 0.4027 0.0429 16.1 0.0560 0.0141 0.0100 0.3396 0.0405 19.7
[0.054,0.057] [0.011,0.012] [0.010,0.011] [0.385,0.424] [0.042,0.044] [16,17] [0.054,0.058] [0.013,0.015] [0.009,0.011] [0.311,0.375] [0.039,0.041] [19,22]

50 0.0579 0.0148 0.0092 0.3135 0.0399 26.0 0.0599 0.0170 0.0082 0.2436 0.0376 34.4
[0.055,0.060] [0.014,0.015] [0.008,0.010] [0.288,0.349] [0.039,0.041] [24,28] [0.057,0.062] [0.016,0.018] [0.007,0.009] [0.210,0.287] [0.037,0.039] [30,38]

100 0.0605 0.0167 0.0077 0.2437 0.0378 38.8 0.0630 0.0188 0.0065 0.1780 0.0358 52.9
[0.057,0.063] [0.016,0.018] [0.006,0.009] [0.206,0.281] [0.037,0.039] [36,41] [0.060,0.066] [0.018,0.020] [0.005,0.008] [0.135,0.221] [0.035,0.037] [48,57]

200 0.0631 0.0185 0.0067 0.1976 0.0362 53.2 0.0653 0.0200 0.0056 0.1505 0.0346 71.8
[0.059,0.067] [0.018,0.019] [0.005,0.008] [0.147,0.248] [0.036,0.037] [49,57] [0.061,0.069] [0.019,0.021] [0.004,0.008] [0.097,0.209] [0.034,0.035] [65,78]

ξ = 0.25 ξ = 0.25

10 0.0653 0.0118 0.0129 0.4641 0.0428 125.6 0.0391 0.0141 0.0121 0.4642 0.0405 152.6
[0.063,0.068] [0.011,0.012] [0.012,0.013] [0.443,0.481] [0.042,0.044] [121,130] [0.034,0.045] [0.013,0.015] [0.011,0.013] [0.432,0.494] [0.040,0.041] [145,160]

20 0.0574 0.0137 0.0114 0.4078 0.0409 138.3 0.0496 0.0155 0.0100 0.3537 0.0391 163.7
[0.056,0.060] [0.013,0.014] [0.011,0.012] [0.391,0.425] [0.040,0.042] [132,143] [0.047,0.053] [0.015,0.016] [0.009,0.011] [0.326,0.380] [0.038,0.040] [153,172]

50 0.0583 0.0162 0.0090 0.2939 0.0384 154.0 0.0599 0.0180 0.0073 0.2117 0.0365 190.1
[0.056,0.060] [0.016,0.017] [0.008,0.010] [0.262,0.321] [0.037,0.039] [146,163] [0.057,0.063] [0.017,0.019] [0.006,0.008] [0.174,0.245] [0.036,0.037] [177,204]

100 0.0618 0.0179 0.0074 0.2222 0.0366 151.1 0.0646 0.0195 0.0058 0.1549 0.0350 186.1
[0.059,0.065] [0.017,0.019] [0.006,0.009] [0.186,0.270] [0.036,0.037] [142,163] [0.062,0.068] [0.019,0.020] [0.004,0.008] [0.115,0.205] [0.034,0.036] [172,202]

200 0.0642 0.0193 0.0061 0.1734 0.0354 133.7 0.0663 0.0205 0.0050 0.1306 0.0342 162.3
[0.060,0.068] [0.018,0.020] [0.004,0.008] [0.127,0.225] [0.035,0.036] [127,141] [0.062,0.070] [0.020,0.022] [0.003,0.007] [0.082,0.186] [0.033,0.035] [151,176]

Notes: Means and 95% confidence intervals. Unobserved heterogeneity is continuously distributed in the DGP, with underlying dimension

equal to 2. The number of groups K is estimated in every replication, with different choices for ξ in (12). 500 simulations. Results for

DGP3.
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Table S8: Firm and worker effects, two-dimensional firm heterogeneity, small V ar(ψ), different choices of ξ, iterated estimators

iterated estimator iterated estimator, bias corrected

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂ Var (ηi) Var

(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values true values

- 0.0758 0.0017 0.0057 0.4963 0.0341 0.0758 0.0017 0.0057 0.4963 0.0341

ξ = 1.0 ξ = 1.0

10 0.0866 0.0000 0.0003 0.1290 0.0358 4.0 0.0867 0.0000 0.0002 0.1169 0.0358 4.0
[0.085,0.088] [0.000,0.000] [0.000,0.000] [0.108,0.150] [0.035,0.036] [4,4] [0.085,0.089] [-0.000,0.000] [0.000,0.000] [0.075,0.153] [0.035,0.036] [4,4]

20 0.0845 0.0002 0.0013 0.2921 0.0356 5.5 0.0823 0.0004 0.0024 0.4556 0.0354 6.9
[0.081,0.087] [0.000,0.000] [0.000,0.002] [0.149,0.420] [0.035,0.036] [5,6] [0.078,0.087] [0.000,0.001] [0.000,0.005] [0.174,0.709] [0.035,0.036] [6,8]

50 0.0791 0.0007 0.0041 0.5444 0.0352 8.0 0.0761 0.0010 0.0056 0.6584 0.0349 10.0
[0.077,0.082] [0.001,0.001] [0.004,0.005] [0.516,0.573] [0.035,0.036] [8,8] [0.073,0.079] [0.001,0.001] [0.005,0.006] [0.609,0.709] [0.034,0.036] [10,10]

100 0.0775 0.0009 0.0050 0.6035 0.0349 11.1 0.0756 0.0011 0.0060 0.6600 0.0347 14.2
[0.074,0.081] [0.001,0.001] [0.004,0.006] [0.583,0.627] [0.034,0.036] [11,12] [0.072,0.079] [0.001,0.001] [0.005,0.007] [0.626,0.694] [0.034,0.035] [14,16]

200 0.0759 0.0011 0.0055 0.6174 0.0348 15.2 0.0750 0.0012 0.0060 0.6345 0.0347 19.3
[0.071,0.080] [0.001,0.001] [0.005,0.006] [0.589,0.648] [0.034,0.035] [14,16] [0.070,0.079] [0.001,0.001] [0.005,0.007] [0.593,0.674] [0.034,0.035] [17,21]

ξ = 0.5 ξ = 0.5

10 0.0799 0.0006 0.0037 0.5408 0.0353 12.2 0.0777 0.0008 0.0047 0.6157 0.0351 12.7
[0.078,0.082] [0.000,0.001] [0.003,0.004] [0.520,0.559] [0.035,0.036] [12,13] [0.075,0.080] [0.001,0.001] [0.004,0.006] [0.536,0.751] [0.034,0.036] [12,14]

20 0.0780 0.0008 0.0046 0.5940 0.0351 15.1 0.0760 0.0010 0.0056 0.6482 0.0349 18.0
[0.076,0.080] [0.001,0.001] [0.004,0.005] [0.578,0.613] [0.034,0.036] [15,16] [0.074,0.078] [0.001,0.001] [0.005,0.006] [0.619,0.676] [0.034,0.035] [18,20]

50 0.0760 0.0010 0.0054 0.6299 0.0349 21.6 0.0748 0.0011 0.0060 0.6568 0.0347 27.0
[0.073,0.079] [0.001,0.001] [0.005,0.006] [0.613,0.650] [0.034,0.036] [20,23] [0.072,0.077] [0.001,0.001] [0.005,0.007] [0.630,0.685] [0.034,0.035] [24,30]

100 0.0753 0.0011 0.0057 0.6364 0.0348 28.2 0.0746 0.0012 0.0061 0.6457 0.0347 35.7
[0.072,0.079] [0.001,0.001] [0.005,0.006] [0.612,0.660] [0.034,0.035] [26,31] [0.071,0.078] [0.001,0.001] [0.006,0.007] [0.607,0.674] [0.034,0.035] [32,40]

200 0.0756 0.0012 0.0059 0.6231 0.0347 35.0 0.0753 0.0013 0.0061 0.6137 0.0346 44.0
[0.071,0.080] [0.001,0.001] [0.005,0.007] [0.594,0.656] [0.034,0.035] [31,39] [0.071,0.080] [0.001,0.002] [0.006,0.007] [0.569,0.657] [0.034,0.035] [38,50]

ξ = 0.25 ξ = 0.25

10 0.0781 0.0011 0.0059 0.6217 0.0347 124.3 0.0650 0.0014 0.0063 0.6481 0.0345 148.7
[0.076,0.080] [0.001,0.001] [0.005,0.006] [0.602,0.642] [0.034,0.035] [121,127] [0.057,0.072] [0.001,0.002] [0.006,0.007] [0.602,0.692] [0.034,0.035] [142,154]

20 0.0755 0.0012 0.0059 0.6122 0.0346 131.0 0.0731 0.0014 0.0060 0.5983 0.0345 150.3
[0.074,0.077] [0.001,0.001] [0.006,0.006] [0.586,0.635] [0.034,0.035] [125,137] [0.071,0.075] [0.001,0.002] [0.006,0.006] [0.556,0.641] [0.034,0.035] [140,160]

50 0.0754 0.0013 0.0060 0.5928 0.0345 134.7 0.0752 0.0014 0.0059 0.5713 0.0344 159.0
[0.073,0.078] [0.001,0.002] [0.005,0.006] [0.568,0.619] [0.034,0.035] [127,142] [0.073,0.078] [0.001,0.002] [0.005,0.007] [0.529,0.619] [0.034,0.035] [146,171]

100 0.0754 0.0014 0.0060 0.5806 0.0345 125.1 0.0753 0.0015 0.0060 0.5597 0.0344 146.7
[0.072,0.078] [0.001,0.002] [0.006,0.006] [0.547,0.609] [0.034,0.035] [116,132] [0.072,0.078] [0.001,0.002] [0.006,0.006] [0.503,0.609] [0.034,0.035] [132,158]

200 0.0755 0.0014 0.0060 0.5704 0.0344 105.4 0.0756 0.0015 0.0059 0.5499 0.0343 121.7
[0.071,0.080] [0.001,0.002] [0.005,0.006] [0.532,0.602] [0.034,0.035] [99,113] [0.071,0.080] [0.001,0.002] [0.005,0.007] [0.490,0.604] [0.034,0.035] [107,134]

Notes: Means and 95% confidence intervals. Unobserved heterogeneity is continuously distributed in the DGP, with underlying dimension

equal to 2. The number of groups K is estimated in every replication, with different choices for ξ in (12). 500 simulations. Results for

DGP4.
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Table S9: Firm and worker effects, discrete firm heterogeneity (K∗ = 10)

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) % misclass.

true values

- 0.0758 0.0017 0.0057 0.4963 0.0341

two-step with K = K∗ = 10

10 0.0758 0.0013 0.0057 0.5770 0.0346 69.0%
[0.074,0.077] [0.001,0.001] [0.005,0.006] [0.566,0.586] [0.034,0.035] [0.678,0.705]

20 0.0758 0.0015 0.0057 0.5355 0.0344 58.5%
[0.074,0.077] [0.001,0.002] [0.005,0.006] [0.525,0.546] [0.034,0.035] [0.560,0.614]

50 0.0759 0.0016 0.0056 0.5083 0.0342 39.3%
[0.075,0.077] [0.001,0.002] [0.005,0.006] [0.499,0.517] [0.034,0.035] [0.338,0.476]

100 0.0759 0.0017 0.0056 0.4981 0.0342 22.6%
[0.075,0.077] [0.001,0.002] [0.005,0.006] [0.489,0.507] [0.033,0.035] [0.171,0.359]

200 0.0759 0.0017 0.0056 0.4945 0.0341 7.5%
[0.074,0.077] [0.002,0.002] [0.005,0.006] [0.484,0.504] [0.033,0.035] [0.050,0.115]

bias corrected with estimated K

10 0.0778 0.0013 0.0047 0.4527 0.0346
[0.076,0.079] [0.001,0.002] [0.004,0.005] [0.441,0.465] [0.034,0.035]

20 0.0762 0.0016 0.0055 0.4917 0.0342
[0.075,0.078] [0.001,0.002] [0.005,0.006] [0.478,0.502] [0.034,0.035]

50 0.0760 0.0017 0.0056 0.4906 0.0342
[0.075,0.077] [0.001,0.002] [0.005,0.006] [0.478,0.503] [0.033,0.035]

100 0.0759 0.0017 0.0057 0.4909 0.0341
[0.074,0.077] [0.002,0.002] [0.005,0.006] [0.480,0.501] [0.033,0.035]

200 0.0757 0.0018 0.0057 0.4930 0.0341
[0.074,0.077] [0.002,0.002] [0.005,0.006] [0.483,0.503] [0.033,0.035]

Notes: Means and 95% confidence intervals. Unobserved heterogeneity is discretely distributed in the

DGP, with K∗ = 10 groups. In the top panel the true number of groups is used. The last column

shows frequencies of misclassification. In the bottom panel the number of groups is estimated in every

replication. 500 simulations. Results for DGP5.
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Figure S1: Parameter estimates across simulations, fixed K
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Notes: See note to Figure 3. K is kept fixed. 500 replications.
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Figure S2: Parameter estimates across simulations, fixed-effects and bias-corrected fixed-effects

estimators
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Notes: Solid is fixed-effects, dotted is bias-corrected fixed-effects. The vertical line indicates the true

parameter value. N = 1889, T = 16. Unobserved heterogeneity is continuously distributed in the

DGP. 500 replications.
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Figure S3: Parameter estimates across simulations, random-effects estimators
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Notes: Solid is K = 2, dotted is K = 4, dashed is K = 8. The vertical line indicates the true

parameter value. N = 1889, T = 16. Unobserved heterogeneity is continuously distributed in the

DGP. 500 replications.
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Figure S4: Dimension of firm heterogeneity

A. Estimation of K B. K̂ against firm size
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Notes: Source Swedish administrative data. Left graph shows the logarithm of Q̂(K) as a function

of K, for different average firm sizes T . Horizontal lines show the corresponding value of ln(V̂h/T ).

The right graph shows the relationship between the log of K̂ and the log of the average firm size in the

sample, across samples.
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Figure S5: Estimates of firm and worker heterogeneity across simulations, two-dimensional firm

heterogeneity, large variance of firm effects
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Notes: Means (solid line) and 95% confidence intervals. � indicates the two-step bias-corrected grouped

fixed-effects estimator and N indicates the iterated bias-corrected grouped fixed-effects estimator. The

different columns represent different values of ξ (that is, different selection rules for the number of

groups). Unobserved heterogeneity is continuously distributed in the DGP. The number of groups K

is estimated in every replication. 500 replications. Results for DGP3.
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Figure S6: Two-dimensional firm heterogeneity, small variance of firm effects
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Notes: See the notes to Figure S5. Results for DGP4.
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Figure S7: Estimates of firm and worker heterogeneity across simulations, two-dimensional firm

heterogeneity, large variance of firm effects, different number of job movers per firm
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Notes: Means (solid line) and 95% confidence intervals. � indicates the two-step bias-corrected grouped

fixed-effects estimator, N the iterated bias-corrected grouped fixed-effects estimator, # the fixed-effects

estimator, and  the bias-corrected fixed-effects estimator. The different columns represent different

values of ξ (that is, different selection rules for the number of groups). Unobserved heterogeneity is

continuously distributed in the DGP. The number of groups K is estimated in every replication. 500

replications. Results for DGP3. 32



Figure S8: Estimates of firm and worker heterogeneity across simulations, two-dimensional firm

heterogeneity, small variance of firm effects, different number of job movers per firm
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Notes: See the notes to Figure S7. Results for DGP4.
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S3 Additional simulation exercises

S3.1 Time-varying unobserved heterogeneity

Let Yit = αi0(t) + Uit. We focus on the mean squared error (MSE):

1

N

N∑
i=1

T∑
t=1

(
α̂(k̂i, t)− αi0(t)

)2
.

We use the following specification: Uit are i.i.d standard normal, and:

αi0(t) = ξi1 + ξi2

Φ−1
(

t
T+1

)
Φ−1

(
T
T+1

) ,
where Φ is the standard normal cdf, ξi1 is standard normal, and ln ξi2 ∼ N (.2, .04) independent of ξi1.

We vary the sample size from T = 5 to T = 40, take N = T 2, and set K = T in every sample.

Figure S9 shows the results for the grouped fixed-effects estimator where the kmeans algorithm is

applied to the vectors of Yit’s in the first step. The graph shows means and pointwise 95% confidence

bands across 100 replications. The results align closely with Theorem 3. Indeed, according to (16)

the rate of convergence consists of three terms: a term Op(K/N) = Op(1/T ) reflecting the estimation

of the KT group-specific parameters, a term Op(Bα(K)/T ) reflecting the approximation bias, which

in this two-dimensional case will be Op(1/K) = Op(1/T ), and a term Op((lnK)/T ) = Op((lnT )/T )

reflecting the noise in estimating group membership for every individual. In this DGP the latter term

is thus the dominant one. In Figure S9 the dashed line shows (ĉ lnT )/T as a function of T , where ĉ

is fitted to the solid line. We see that the MSE of grouped fixed-effects and the theoretical fit align

closely. This suggests that the upper bound on the rate in (16) is very informative for this DGP.

S3.2 “Double grouped fixed-effects” in a probit model

An alternative estimator, in linear or index models, is “double” grouped fixed-effects. As an example,

consider the static probit model:

Yit = 1{X ′itθ0 + αi0 + Uit ≥ 0},

where Uit are i.i.d standard normal, and Xit = µi0 + Vit, Vit i.i.d, independent of µi0, αi0, Uis.

Consider the moments hi = (Y i, X
′
i)
′. In the first step, we discretize each component of hi

separately, by applying kmeans to Y i and all components of Xi in turn, with K groups. In the second
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step, we estimate the probit model by including all group indicators as additive controls. Figure S10

shows the results in two cases: one-dimensional (panel A) and two-dimensional heterogeneity (panel

B). The results compare two-step grouped fixed-effects with “double” grouped fixed-effects estimators.

For the sake of illustration, we set the number of groups K = b
√
T c in every sample. This leads to

a large approximation bias in the two-dimensional case, as shown by panel B. We see that double

grouped fixed-effects performs significantly better than grouped fixed-effects in this environment.

Figure S9: Time-varying unobserved heterogeneity
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grouped fixed-effects across 100 replications. The dashed line is the fit based on a (lnT )/T rate.
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Figure S10: Two-step grouped fixed-effects and double grouped fixed-effects in a static probit

model

A. αi0 = µi0 B. Corr(αi0, µi0) = .5
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Notes: Averages over simulations. The dashed horizontal line is the true value. The curve further

away from it is two-step grouped fixed-effects, the curve closer to it is double grouped fixed-effects.

N = 100, 100 replications. K = b
√
T c.
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