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Abstract

This paper examines how employer and worker specific productivity shocks transmit
to wage and employment in an economy with search frictions and firm commitment. I
develop an equilibrium search model with worker and firm shocks and characterize the
optimal contract offered by competing firms to attract and retain workers. In equilib-
rium risk-neutral firms offer risk-averse workers contingent contracts where payments
are back-loaded in good times and front-loaded in bad ones: the combination of search
frictions, productivity shocks and private worker actions results in partial insurance
against firm and worker shocks. I estimate the model on matched employer-employee
data from Sweden, using information about co-workers to separately identify firm spe-
cific and worker specific earnings shocks. Preliminary estimates suggest that firm level
shocks are responsible for about 20% of permanent income fluctuations, the remain-
ing being accounted for by individual level shocks (30% to 40%) and by job mobility
(40% to 50%). The wage contract attenuates 80% of individual productivity shocks
but passes through 30% of firm productivity fluctuations.
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1 Introduction

What are the drivers behind the observed earnings and employment uncertainty faced by
workers in the labor market? How is this uncertainty mitigated by contracts between work-
ers and firms in equilibrium? How is this transmission mechanism affected by policies? To
address these questions, I develop a framework where workers face uncertainty about both
their productivity and ability to locate new job opportunities and where firms choose op-
timally how wages respond to shocks. Changes in aggregate, firm level and worker specific
productivities affect the value of a worker to an employer. At the same time, employed work-
ers cannot immediately switch firms when current productivity decreases and unemployed
workers might require several periods to locate a job opportunity. I show theoretically that
in equilibrium, firms offer contracts that smoothly track worker’s productivity in his current
match, while responding with different intensity to different sources of shocks. I estimate
the model using match employer-employee data and find that firm shocks accounts for 20%
of a worker’s permanent income uncertainty and that only about a third of underlying pro-
ductivity gets passed through into wages. Employment transitions to unemployment and
other jobs (40%) and worker shocks (40%) are the main sources of uncertainties since those
are not insured by the firm. This confirms that unemployment insurance plays an important
role in providing insurance that cannot be insured by the wage contract since the firm is
unable to insure the worker when the employment relationship ends. However if generous
unemployment insurance reduces earning risk, it also affects the employment level and the
total output of the economy.

Earnings and employment uncertainty have important implications for welfare. A large
body of literature has studied both theoretically and empirically the nature of the income
process and quantified how it translates into consumption and wealth inequalities'. However,
the income process itself is the observed part of the complex employment agreement that
links a worker to a job. The mechanism that defines this agreement in equilibrium, how the
payments are delivered over time and how they respond to underlying productivity shocks has
long been of high interest to the literature both theoretically and empirically. Knight (1921)
first pointed out that one of the roles of the firm is to insure workers against productivity
shocks. Baily (1974) and Azariadis (1975) formalized the idea and showed theoretically that
when firms can sign long-term contracts, they fully insure their work force and offer fixed

wage contracts even in the presence of demand shocks. Yet empirically income processes

H(MaCurdy, 1982; Blundell, Pistaferri, and Preston, 2008; Attanasio and Pavoni, 2011; Low, Meghir, and
Pistaferri, 2009)



feature growth and employment risks (Altonji, Smith, and Vidangos, 2009; Low, Meghir,
and Pistaferri, 2009).

Empirical evidence for the transmission of firms’ shocks to workers” wages is provided by
Guiso, Pistaferri, and Schivardi (2005). Using employer-employee matched data from Italy,
they estimate how permanent and transitory productivity shocks of firms enter the wage
equation of continuing workers. They report that full insurance of firms permanent shocks
is rejected by the data. Their paper, however, uses a sample of continuing workers and does
not control directly for the selection of workers in and out of firms. If workers who suffer
the most from a drop in firm performance are also the ones leaving the sample, the effect
of firm shocks is underestimated. Roys (2011) uses French firm data to estimate a model
with homogenous workers and firm adjustment costs. He finds that firm permanent shocks
affect employment and transitory shocks affect wages. The result however might be driven
by the assumption that wages are set according to Nash bargaining which means that they
are continuously renegotiated.

Contract theory offers answers to the apparent failure of the first best allocation. Harris
and Holmstrom (1982) show that in a competitive market without worker commitment
firms continue to insure against downward risk but have to increase the wage whenever
productivity increases in order to retain the worker. Thomas and Worrall (1988) introduce
the idea of a shock to job productivity by developing a model where a match between a firm
and worker enjoy rents that can vary over time. They derive the optimal contract in an
environment where the outside option is exogenous and show that, in a way similar to Harris
and Holmstrom (1982), the wage remains constant until either the firm’s or the worker’s
participation constraint binds. Burdett and Coles (2003) and Shi (2009) characterize the
optimal contract when outside offers come from competing firms and the worker’s decision
is private; firms offer wages that increase with tenure to retain workers even-though they
are risk averse and would prefer flat wages. Menzio and Shi (2010) extends this equilibrium
framework by reintroducing match shocks and aggregate fluctuations, but do not characterize
the optimal contract. Schaal (2010) does characterize the contract in a similar model but
with homogeneous risk neutral workers. Rudanko (2009) derives the optimal contract with
two sided lack of commitment but without on-the-job search or any private action from the
worker, wage changes when outside options bind. To my knowledge, the current paper is
the first to characterize the long term optimal contract offered in equilibrium by firms in
an economy with search frictions, on-the-job search, firm and worker shocks and risk averse

workers.



This paper makes three contributions to the existing literature. First, I document new
findings about the co-movement of wages among co-workers which suggests larger transmis-
sion of firm shocks to wages than previously reported. Second, I characterize the optimal
contract offered by competing firms in a directed-search equilibrium. Third, I estimate and
evaluate quantitatively the model using linked employer-employee data.

The model builds on the directed search equilibrium of Menzio and Shi (2009), which
allows for stochastic heterogeneity of firms and workers as well as worker risk aversion.
Workers can search for new positions when employed and when unemployed. When on
the job, the search decision is not observed and outside offers are not contractible by the
firm. Firms can commit to any history-contingent long-term contract but the worker can
walk away at any time. This contract flexibility is crucial because picking a particular form
of wage setting might impose a specific level of insurance between the firm and the worker,
whereas here it is determined by profit maximization. Flows of workers into firms is modeled
using directed search, when searching for a new job, workers observe all contract offers and
choose one to apply to. Each contract has a queue associated with it and each worker
chooses the queue that maximizes the product between the return of the contract and the
probability of getting picked from that queue. Directed search is a very natural extension
of the competitive labor market that directly generates all the endogenous movement of
workers in, out and across firms?.

I show that in equilibrium firms post contracts that can be represented by a target wage
that corresponds to the certainty equivalent of the current match productivity. Wages below
that target wage will increase and wages above will decrease. The optimal contract presented
here shares features of both Burdett and Coles (2003) and Hopenhayn and Nicolini (1997):
firms back-load wages to incentivize workers to search less when profits are positive and
front-load wages when profits are negative to incentivize the worker to search for a better
position. When the match experiences a negative shock, the firm does not want to layoff
the worker right away and decides to insure her in way similar to an optimal unemployment
insurance scheme.

The empirical strategy of this paper utilizes the property that the wage smoothly tracks
the target wage, which is subject to both worker and firm productivity shocks. Assuming
that shocks to the worker and shocks to the firm are independent and that co-workers share

the same firm productivity, shocks to the firm should affect all workers, whereas idiosyncratic

2The pioneering work in directed search is due to (Montgomery, 1991; Peters, 1991; Moen, 1997; Shimer,
1996; Burdett, Shi, and Wright, 2001; Shimer, 2001).



shocks should affect them in an uncorrelated way. Using the auto-covariance and co-variance
of co-workers’ wages, I can identify how much of the wage movement is due to the firm relative
to the worker and estimate the productivity process of both.

In Section 1, I present auxiliary models that will be used for estimation. This section also
motivates the economic question with evidence of risk transmission at the firm level in the
Swedish matched employer-employee data. In Section 2 I formally present the equilibrium
search model and I characterize the optimal contract. In Section 3, I present the estimation
strategy and I discuss the identification of the model. This section also reports the estimation
results. In Section 4, I put the model to work to answer the question of how much of income
uncertainty is due to worker shocks and how much is due to the firm. A summary of the

notation and all proofs are in the Appendix.

2 Earnings dynamics and participation

2.1 Data

The employer-employee matched data from Sweden links three administrative data-sets: the
employment data, the firm data and the benefits data that track workers who are currently
unemployed. The sample runs from 1993 to 2007 and covers around 6 million individuals.
The firm data covers around 100,000 firms in four industries. The sample only covers firms
with more than 10 employees, which means that some workers covered in the data work
in a firm for which we do not have an identifier. On the worker side, all self-employed are
dropped from the original sample, as well as some specific industries such as fisheries and the
financial sector. I first de-trend the data with time dummies to remove any non stationary
effects. I select individuals under 50 years of age, and, for moments computed at the firm

level, I limit the data to firms with at least 25 employees.

2.2 Wage growth for job-stayers

In order to give an intuitive interpretation to moments computed from the data I introduce

the following statistical model for residual log earnings of continuing workers :

Wije = B2+ Wi + vy

Wijt = Wiji—1 + O0j¢ + &ijes



Table 1. Residual income variance

HS dropout HS grad Some college

residual wage variation o2~ (0.1274 0.1159  0.2033
(0.000208) (0.000132)  (0.000338)

worker transitory o2 0.0128 0.0123 0.014
(0.000158) (0.000117)  (0.000179)

worker permanent ag 0.0198 0.0173 0.0193
(0.000238) (0.000161)  (0.000242)

co-worker permanent o2 0.0012 0.00146  0.00174
(3.83¢-05) (3.11e-05)  (4.93¢-05)

shared by co-workers 6.07% 8.41% 8.97%
(0.19) (0.173) (0.309)

equivalent lottery +3.47% +3.82% +4.17%
(0.0555) (0.0407) (0.0591)

Standard errors are computed using clustered resampling. Wage differences are taken year
on year. The equivalent lottery represents fair lottery over a permanent wage raise or cut
in percent that would be equivalent to the share of variance common to co-workers.

where 7 is the individual, j is the firm and ¢ is time. Z; is a yearly dummy, w;;; is the
permanent wage, &;;; is an idiosyncratic permanent shock to the wage and 4, is a permanent
shock shared by all the workers in firm j. Wage growth shared by co-worker should be
thought of as a firm specific event. The model parameters can be estimated using simple
moments from individual wage growth and average wage growth within a firm (See Appendix
A.1). I report the estimates for each education group in Table 1.

The value of o5 is of interest as it represents the risk that co-workers share. To understand
its monetary value, it is useful to think of the equivalent lottery that delivers a permanent
percentage wage raise or cut. For instance for college graduates, every year, co-workers in
a firm face the same lottery draw that delivers with 50 percent chance a wage raise of 4.17
percent and with 50 percent chance a 4.17 percent wage cut. This wage growth lottery is
permanent and consequently 4.17 percent is economically significant. This provides evidence

that part of the wage growth uncertainty is shared at the firm level.

2.3 Wage growth and value added

Quantitatively, the numbers presented in the previous section are larger than the one reported
previously in the literature that focused on the link between value added and wages such as
Guiso, Pistaferri, and Schivardi (2005) and Roys (2011). I replicate here a procedure similar

to those papers to compare the Swedish economy to the French and Italian ones. I consider a



Table 2. Income variance and value added shocks

HS dropout HS grad Col grad
T 0.0287*** 0.0217*** 0.0181***
(0.000955) (0.000643) (0.000679)
equivalent lottery 40.537%***  40.453%***  40.399%***
(0.0179) (0.0134) (0.015)

Standard errors are computed using clustered resampling. Wage differences are taken
year on year. The equivalent lottery represents fair lottery over a permanent wage
raise or cut in percent that would be equivalent to the share of variance common to
co-workers.

simple unit-root model for the log value added per worker. The innovation shock i is then
linked to the shock of permanent income among co-workers d;; from the previous section by

the parameter 7:

yir = BXi+ 05+ ujp
Uit = Yji—1 + [yt
Oje = Thjt + Vjt

Table 2 contains the estimates for 7 for each eduction group as well as the equivalent
lottery implied by the amount of log wage growth uncertainty explained by shocks to value
added. As in Guiso, Pistaferri, and Schivardi (2005) we see that the link between value added
and wages is significantly different from zero. This provides evidence against the hypothesis
of full insurance of firm shocks. The magnitude of the transmission of value added shocks to
worker is economically small and similar to the values reported previously in the literature.
Tables 1 and 2 suggest that shocks to value added can only explain a small part of the risk
co-workers jointly share at the firm level. Consequently, I will focus the empirical analysis

on wages within the firms rather than on value added.

2.4 Worker transitions

Finally it is also of interest to measure how changes at the firm level affect transitions of
workers to unemployment and to other firms. When a firm receives a bad productivity
shock, transitioning to another firm is a good way to insure income. This is precisely why
studying the impact of search friction on the provision of insurance is important. Table

3 reports a linear probability models of worker transitions to unemployment and to other



Table 3. Transition probabilities to unemployment and other jobs

to another firm

to unemployment

HS dropout HS grad Col grad HS dropout HS grad Col grad
(Intercept) 0.0134%** 0.0185%** 0.0245%** 0.0163*** 0.0154*** 0.0101***
(0.000118) (6.48¢-05) (0.000107) (0.000124) (5.74e-05) (6.76¢-05)
worker wage 0.0329%** 0.0468*** 0.028%*** -0.0142%%* -0.0033***  -0.00178%**
(0.000386) (0.000219) (0.00027) (0.000408) (0.000194) (0.000171)
firm wage change 0.0162%** 0.0165*** 0.0035%** 0.0186*** 0.0208*** 0.0202***
(0.00122) (0.000782) (0.0011) (0.00129) (0.000693) (0.000695)
firm wage -0.032%%* -0.0522%** -0.0281%** -0.0115%** -0.0222%%* -0.0132%**
(0.000673) (0.000422) (0.000494) (0.00071) (0.000374) (0.000312)
N 2,450,855 9,788,831 4,246,564 2,450,855 9,788,831 4,246,564

Linear probability model of the probability for currently employed workers. The dependent variable is an indicator for moving to another firm for the
first three columns, and an indicator for transition to unemployment for the last three columns. Regressors include in order the change in worker’s
log wage, the cahnge in the mean log wage within current firm and the mean wage in the firm.

firms. Regressors include the mean wage of the firm and the mean wage change in the firm.

First we see that the mean wage in the firm affects negatively both transitions. This
suggests that better firms pay higher wages and keep their workers longer. Interestingly
however the worker’s wage affects positively the probability to change firms. This can be
explained by the fact that higher wages are more difficult to increase to prevent the worker
form leaving, or it could be that higher earners move more frequently. We also note that
an increase in firm average wage while keeping worker’s wage constant affects positively the
mobility of the worker. The results from Table 3 tell us that the risk of job loss is affected
by changes in the firm. Not only do firms that pay higher wage seem to retain their workers
longer, it also seems that a change in the firm’s average wage does affect the rate at which
workers loose their job. This source of risk associated with job loss can’t be captured by the
log wage models presented in the previous section that only looked at continuing workers.
The model introduced in the rest of the paper will account for this additional employment

risk.

3 An equilibrium search model of risk sharing and in-

come dynamics

I present here an equilibrium model with search frictions and private worker actions. The
key feature of the model is to embed the bilateral relationship between the firm and the
worker, with productivity uncertainty, inside a competitive search equilibrium where firms

compete to attract and retain workers.



In this model, ex-ante identical firms compete by posting long-term contracts to attract
heterogeneous workers. Employed and unemployed workers observe the menu of contracts
offered in equilibrium and decide which one to apply to. This process forms sub-markets
of workers applying to particular contracts and firms offering them. Within each queue the
matching between firms and workers is random. When choosing which sub-market to partic-
ipate in, both firms and workers take into account the value of matching and the probability
of matching. This probability is driven by how many firms and workers participate in a
particular sub-market.

When matched, the contract specifies the wage after each possible history of shocks for
the firm and workers. Given his wage profile, the worker chooses which sub-market to visit
while employed and chooses effort, which directly affects the probability the current match
remains intact. Both of these actions are private and so unobserved by the firm. Firms take
this into account and post contracts that incentivize the worker’s action in an optimal way.
This will mean that in some cases the wage will adjust downward albeit in a smooth way. I

now formally introduce the model.

3.1 Environment
Agents and preferences

Time is discrete, indexed by ¢ and continues for ever. The economy is composed of a discrete
uniform distribution of infinitely lived workers with ability indexed by = € X = {x, z5...2,,, }.
Workers want to maximize expected lifetime utility, Eqo 352, 5" (u(w;) — c(e;)) where utility
of consumption u : R — R is increasing and concave and cost of effort ¢ : R — R is increasing
and convex with ¢(0) = 0. Worker’s ability = changes over time according to Markov process
[ (z¢41]z¢). Unemployed workers receive flow value of unemployment b(z). The other side
of the market is composed of a uniform distribution of ex-ante identical firms with active
jobs and vacancies. Vacancies live for one period and become active jobs if matched with a
worker.

An active job is characterized by the current worker ability x and the current match
quality z. The match quality z evolves with an innovation ¢; drawn at the firm level such
that 2,1 = g(2, te). 4 is a firm level shock that affects all continuing workers” TFP. New hires
all start with z = 0. The function g(-, ) is assumed to generate a monotonic transition rule.
Every period a match (x, ;) has access to a technology that produces f(zy,2:). Worker’s

effort e affects the probability that the technology continues to exists next period. This



captures the idea that a negligent worker might loose a client or break the machine and
cause the job to disappear. The firm cares about the total discounted expected profit of
each created vacancy.

Firms here operate constant return to scale production functions and can be thought of as
one worker per firm. However, empirically one cannot aggregate firms with the same output
as the history of productivity shocks affects the distribution of workers. For instance whether
or not a firm had a very bad shock in the last period will affect the current distribution of
workers beyond the current productivity. To pin down the distribution of workers in a given

firm one needs to know the entire history of shocks.

Search markets

The meeting process between workers and firms vacancies is constrained by search frictions.
The labor market that matches workers to vacancies is organized in a set of queues indexed
by (z,v) € X xV where x is the type of the worker and v is the value promised to her in that
given queue. Firms can choose in which (z, v) lines they want to open vacancies and workers
can choose in which v line associated with their type = they want to queue®. Each visited
sub-market is characterized by it’s tightness represented by the function § : X x V — R
which is the ratio of number of vacancies to workers. The tightness captures the fact that a
high ratio of vacancies to workers will make it harder for firms to hire. In a directed search
model like the one presented here, the tightness is queue specific which means that different
worker types could be finding jobs at different rates. In queue (z,v) a worker of type x
matches with probability p(f(x,v)) and receives utility v. Firms post vacancies at unit cost
n and when posting in market (z,v) the vacancy is filled with probability ¢(6(z,v)). ¢(x,v)

will denote the mass of vacancies created in market (z,v).

States and actions

A worker is either employed or unemployed and enters each period with a given ability x.
When unemployed she collects benefit b(z) and can search every period. When searching
she chooses which sub-market (z,v) to visit, in which case she gets matched with probability

p(6(z,v)) and if matched joins a job and receives lifetime utility v.

3Menzio and Shi (2009) Theorem 3 tells us that workers will separate by type in equilibrium if markets
are indexed by the value that each type z would get in a particular sub-market (v = (v(z1),v(x2)...v(2,,)) €
R™= ) and workers can apply to any. At equilibrium only a given type x visits a particular market. This
market can then be represented directly by (z,v) as done in the current paper.

10
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Figure 1: within period time line

An employed worker is part of a match and starts the period with a given ability level
x and a current match quality z. The period is then divided in four stages as illustrated
in Figure 1, first is production, the firm collects output f(x,z) and pays the wage w to the
worker. The worker cannot save, consumes all of w, chooses effort e and gets flow utility
u(w) — ¢(e). With probability (1 — d(e)), where §(e) is decreasing in e, the employment
persists to the next period. With probability d(e) the worker moves to unemployment. In
the search stage, the worker is allowed to search with efficiency x. When searching she
chooses which sub-market (z,v) to visit and gets matched with probability kp(0(x,v)). If
matched she moves to a new match where she will enjoy v and the current job will be
destroyed. If the worker is not matched to a new job, the current job persists, a new z’ is
drawn conditional on the old one, and a firm level shock ¢ is drawn to update z. In summary,
in every period an active job chooses the wage w, and the worker chooses effort e and which
sub-market (z,v) to search in. Because ¢(0) = 0 the worker can quit in every period if the
firm does not promise enough. By choosing v and e the worker controls his transition to

other jobs and to unemployment.

Informational structure and contracts

A contract defines the transfer and actions for the worker and the firm within a match for
all future histories. Call s, = (z,,2;) € S = X x R the state of the match 7 periods in the
future and call s™ = (s7...s;) € S™ a given history of realizations between s; the state today
and s,, the state in 7 periods.

The history of productivity is common knowledge to the worker and the firm and fully

11



contractible. However the worker’s actions are private information and transitions to other
firms or to unemployment are assumed to be not contractible. This rules out side payments
as well as countering outside offers*. Here, the contract offered by the firm to the worker is

then represented by:
C:=(w,o0); with w:={w.(s7)}22,, and 0 := {v.(s7), e-(s7)}22,, (1)

I explicitly separate the firm’s choice from the worker’s response. The firm chooses the
wage w, paid at every history and the worker responds by choosing (v,,e,) the search

and effort decision®

. o can be thought as the action suggested by the contract and I will
focus on contracts where the recommendation is incentive compatible. The contract space
is completely flexible in the way it responds to tenure and any productivity history. In
particular it leaves the firm free to chose how the wage should respond to productivity

shock, which is the central question of this paper.

3.2 Worker choice

An unemployed worker of type x chooses optimally which sub-market (x,vg) she applies to.
The only value she cares about is the value she will get, specifically vy and the tightness
of the market 0(x,vy). Higher vy sub-markets deliver higher values but have longer average

waiting times. I can write the value U(z) of being unemployed as follows:

Ula) = sup ba) + Bp(OCa, o) + B (1~ p(O(o. o)) Burald (). (W-BE)
We follow by writing the problem of the employed worker and the firm as a recursive contract.
As presented in Spear and Srivastava (1987) the state space is augmented with V| the
promised utility to the worker. The recursive contract is characterized at each (x,z, V) by
{mi, wi, e;, V15, Wiz Yiz1.2 where m; : S x V — [0, 1] is a randomization, w; : S x V. — R} is
the wage, ¢; : S x V — [0, ] is effort choice, v; : S x V — [0,7] is the search choice and
Wiz : S x (X' x R) — V is the utility promised for each realization next period.

The worker optimally chooses the action (v,e), when promised next period expected

4Lentz (2013) develops a model with optimal contracts and countering of outside offers, but without
productivity shocks, and shows that firms continue to backload wages.

5Derivations will later require a randomization which means that the contract can specify simple proba-
bility over actions instead of actions themselves. This is left implicit at this point but will be clarified in the
recursive formulation of the problem.

12



utility W = E,..,W,.., she solves the following problem:

sup u(w) — c(e) +(e) BB U (@) + (1 — (€)) Brep(0(, v) v+ B(1—3(e)) (1 — kp(B(z, V)W,

v,e

for which we define the associated worker policies v* : X x V — [0, 0] and * : X x V — [0, ].
Because of the properties of p(-), 0(-,-) and ¢(-), those functions are uniquely defined. Note
that those policies only depend on the promised utility for next period and not on the current

(z1,V) as stated in the following definition.

Definition 1. We defined the composite transition probabilities p : X x V — R and the
utility return to the worker 7 : X x V' — R as functions of the promised utility W (using
short-hand e* = e*(z, W) and v* = v*(z, W)):
Pz, W) =r(1—0d(e")) (1 = p(0(x, v7)))
Pz, W) = —c(e) + pr (1 = (")) p(0(z, v7)) (v} = W)
+0(€") BB oU (2") + 5 (1 — 5(e")) W.

These functions capture everything the firm needs to know about the consequences of

setting the wage dynamically. We now turn to the firm’s problem.

3.3 Firm profit, optimal contracting problem

I can now describe the firm problem in terms of promised utilities. The firm chooses a lottery
over promised values and wages which then determines the participation probabilities. The

expected profit of a match to the firm can be expressed recursively as

j([[‘, 2 V) = sup Z T (f(xa Z) —w; + Bﬁ(xu M)Ez’z’j(xly Zlu Wix’z’))
wi,wi Wz W z! 2! 271 2
s.t V= Zm w(w;) + 7(x, W;)) , (BE-F)

W, = EWix’z’a Zﬂ'i = 1.

The firm chooses the current period wage w; and the promised utilities W;,/.. for each
lottery realization i and state of (2, 2') tomorrow. These control variables must be chosen to
maximize expected returns subject to the promise keeping constraint. This constraint makes
sure that the choices of the firm honors the promise made in previous periods to deliver the

value V' to the worker. The right hand side of the constraint is the lifetime utility of the

13



worker given the choices made by the firm. The lottery is present only to insure concavity
of the function.

The incentive compatibility of the worker is embedded in the 7 and p functions that we
defined previously. By increasing future promises the firm can increase the probability that
the match continues. However at given V', larger promised utilities go together with lower
current wage w. Since the utility function is concave, there will be a point where too low of
a wage is just not efficient. This is the classic insurance incentive tradeoff.

Finally firms choose how many vacancies to open in each (z,v) market. Given vacancy
creation cost 1 and the fact that the match quality z starts at 0, the return to opening a
vacancy is given by:

Io(z,V) = q(0(x, V)T (,0,V) —n,

and firms will open vacancies in a given market if and only if expected profit is positive.
The vacancy creation cost is linear, which means that if 1 is positive the firm will create an

infinity of vacancies, if it’s negative it won'’t create any and if it’s zero the firm is indifferent.

3.4 Equilibrium definition
Free entry condition

We now impose a free entry condition on the market. Firms will open vacancies in each

markets until the the expected profit is zero or negative:
V(z,V) e XxV: Ty(z,V) <0. (EQ1)

This will pin down the tightness of each market. ¢(x,v) will denote the total mass of
vacancies posted in market (z.v).
Market clearing

Markets for labor must clear, in the sense that the equilibrium distribution must be gener-
ated by the equilibrium decisions. Given an equilibrium stationary distribution h(z,y, z, V)

of workers assigned to matches with a given promised utility, given the mass ¢(z, V) of
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vacancies, the following clearing condition must be satisfied:

Ve,o o ¢(z,v) = 0(x,v) {u(x)l[vé(a:) = v]

+3 [ Sl | o0 WL W) = o] d @2V (BQ2)
zeXVYz 4 !

There is one last market clearing equation for ¢ and it states that ¢ in the next period is
consistent with itself, all the equilibrium decisions, and law motions such as the shocks on

x, z and the endogenous separation. This is left for the appendix.

Definition 2. A stationary competitive search equilibrium is defined by a mass of
vacancies ¢(x, v) across sub-markets (z,v), a tightness 0(z,v) € R, an active job distribution
h(x,z,V) and an optimal contract policy & = {m;, w;, €;,vj, Wiy }i—1 2 such that:

(a) & solves the firm optimal contract problem BE-F and so satisfies worker incentive

compatibility.

(b) O(x,v) and ¢(z,v) satisfy the free entry condition EQ1 for all (z,v)

(c) O(x,v), ¢(x,v) and h(x,z, V) solve the market clearing condition EQ2

(d) h(z,z,V) is generated by ¢(x,v) and £

The equilibrium assigns workers to firms with contracts in a way where neither workers or
firms have an incentive to deviate. The distributions ¢ and h represent the equilibrium

allocation.

3.5 Equilibrium and contract characterization

Lemma 1 (existence). A stationary competitive search equilibrium exists.
Proof. See appendix A.2 n

Menzio and Shi (2010) gives us the important results that a block recursive equilibrium
exists in the version of this model with aggregate shocks and no worker effort or hetero-
geneity, and Tsuyuhara (2013) proves the existence with effort but without shocks or firm
heterogeneity. The existence continues to be true when the incentive problem and the shocks

are combined. The equilibrium is also well defined when adding aggregate shocks.

Lemma 2. The Pareto frontier J(x,z,V) is continuously differentiable, decreasing and

concave with respect to V' and increasing in z.
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Proof. See appendix A.4 m

Concavity is a direct implication of the use of the lottery. I then adapt the sufficient
condition from Koeppl (2006) for differentiability in two-sided limited commitment models.
From the free entry condition, the tightness function is a continuously differentiable and
concave function of J(z,z, V'), which implies that the composite search function p(6(z,v))
inherits those properties for all x € X.

I am interested in how firms decide to compensate workers over time given that they face
the classic trade-off between insurance and incentives. The following proposition provides a

clear prediction for how wages move dependent on the current state of the match:

Proposition 1 (optimal contract). For each viable match (x, z), independent of the lottery
realization, the wage policy is characterized by a target wage w*(x,z), which is increasing

i z such that:

wy <w (xy,20) = wy < wpp < w*(wy, z)  incentive to search less

wy > w(xy, ze) = w (g, z) < wir < wy o incentive to search more
where the target wage is characterized by the zero expected profit condition for the firm:
\V/l’, z Ex’z’\xzj(xla Z/, Wz’z’) =0

Proof. See Appendix A.5. n

The optimal contract links wages to productivity. For all histories of shocks, the change in
wage growth will be in the direction of the target wage which is itself tied to the productivity
of the match. This means that workers’ wages will respond to any shock affecting the
expected productivity (Figure 2 shows an example wage path). In particular it will respond
to both worker specific and firm productivity shocks. The exact change in the wage is
characterized by the first order conditions of the firm problem (BE-F) and reads:
) B T W) = o=

/
V5T, 2 W(wes)  w(w)

The right hand side represents the change in marginal utilities and tells us that risk aversion
affects how rapidly wages adjust. On the left hand-side the first term represents the severity
of the moral-hazard problem and the second term is the discounted expected profit of the

firm. This expression resembles the main equation in Rogerson (1985) and captures the
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Figure 2: Wage and target wage example
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Notes: This figure represents the target wage (dotted blue) and the actual wage (plain

blue) for a worker. The red line represents a second worker sharing same firm specific
shocks, but a different worker specific productivity.

incentive problem the firm is facing when paying the worker. When in a match the worker
and the firm are part of a locally monopolistic bilateral relationship as in the original paper.
However, the incentive problem here is precisely on the availability of the outside option.
In Rogerson (1985), workers effort affects the output of the match whereas here, the effort
affects its duration and the availability of outside options.

The fact that wages adjust downward even though firms can commit is the consequence
of the existence of rents and the presence of an incentive problem. In a competitive market
without rents and with full commitment, even in the presence of productivity uncertainty,
the firm will fully insure workers and the wage will be constant until the relationship is
exogenously destroyed. The wage paid to the worker is the certainty equivalent of the
present value of the firm output.

Harris and Holmstrom (1982) show that when allowing for only one-sided limited com-
mitment, the wage will have to adjust when worker’s productivity increases so as to retain
her (Figure 3.al). However negative shocks continue to be fully insured (Figure 3.a2). It is
the lack of commitment that prevents the firm from offering the worker full insurance. Work-
ers would want to commit ex-ante but can’t and so the lack of commitment is a constraint,

not a relaxation.
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. to increases in match specific productivity in match specific productivity
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The wage does respond to decreases
in either productivity

The wage responds to decreases
in match specific productivity

_____________

Figure 3: productivity and wages with rents, lack of commitment and incentive problems

In the presence of rents the outside option of the worker and the productivity in the
current match might vary separately. The outside option is linked to characteristics the
worker caries with her when she moves to another firm, while the match rent also depends
on the firm specific characteristics. Retaining the worker only requires offering more than
her outside offer and and so only depends on worker-specific characteristics. This means
that with rents only, the worker’s wage does not respond to firm specific productivity shocks
(Figure 3.b). Thomas and Worrall (1988) take the outside offers and the match rents as
exogenous and add firm-side lack of commitment and show that in that case downwards
adjustment will happen when the firm participation constraint binds. However in the interior
region of the surplus, the contract fully insures the worker and the wage is constant.

The final ingredient is the incentive problem (Figure 3.c) which implies an unique efficient
transfer from the firm to the worker instead of a full set. The worker chooses where to search
and applies to increasingly long queues when promised higher values. Whenever the worker
is getting less than the total value of the match, she will tend to leave the current job

with a higher than efficient probability (inversely when the workers gets more, she does not
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search enough). Ex-ante, it is more efficient to sign a contract that will give up some of the
insurance to come closer to the efficient worker decision. This dynamic was fully described
in the extreme case of bilateral monopoly of Rogerson (1985) and continues to apply here in
an equilibrium with firm competition and rents.

The continuum of queues available to the worker in the directed search equilibrium can
be thought of as a probabilistic version of the constraint faced by firms in Harris and Holm-
strom (1982). In their competitive version workers can find their v with probability one,
whereas with directed search they can access any v < v with decreasing probability p(v). In
the presence of search frictions the firm-worker relationship becomes a temporary bilateral
monopoly with an incentive problem determined by the equilibrium. As the strength of the
friction varies we get a continuum of contracts a la Rogerson (1985), with the property that
as search frictions vanish, the contract becomes Harris and Holmstrom (1982) (See Figure
4).

Since rents and incentives are sufficient for the transfer of firm shocks to wages, search
frictions are only one of several possible mechanisms. In the present model, there are two
sources of rents, search frictions and match specific TFP, and two incentive problems, on
the job search and effort choice e. This means that even when frictions are completely shut
down, we would still see some firm level shocks in the earning dynamics®. Search frictions
are an interesting feature not only because they allow us to consider employment risk but
also because they generate both the rents and the incentive problem at the same time. It
is also interesting to note that the shape of the meeting probability function creates some
downward rigidities as in Harris and Holmstrom (1982).

Finally, firing never happens right away. First the firm decreases the wage of the worker
over time because forcing her to search elsewhere is the most effective way for the firm to
deliver ex-ante utility. The firm, when attracting the workers, can commit to paths where
they keep the worker on payroll for a given amount of time even though it means negative

expected profit.

T am in the process of estimating a frictionless version of the model on a subset of the moments that
should be included in future version.
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Figure 4: Meeting probability

4 Estimation

4.1 Model specification and identification

I estimate the model using indirect inference and a parametrized model. I present in Table
4 the specification I use in the next sections. I use the constant relative risk aversion utility
function. The discount rate for the worker and the interest rate for the firm are set to an
annual 5% and the model is solved quarterly. The production function is parametrized by v,
a scale parameter, v, and -y, that control the dispersions in ability and match productivity.
The worker effort function is such that ¢(0) = 0,¢'(-) > 0,¢"(-) > 0 and lim,_,; ¢(e) = oco. For
the time being I set the flow value of unemployment to 30 percent of the starting productivity
and I fix ¢; = 0.3 and v, = 1. I normalize the mean wage in the economy which pins down
the value of 7,. I also set an absolute lower bound of —f(Z, 29)/(10 - r) on the negative
surplus that firms can commit to. This leaves 6 parameters to estimate as shown in Table 6.

The vacancy cost 1 affects the meeting rate through the free entry condition (EQ1) and x
affects the relative efficiency of on-the-job search. The probability of exiting unemployment
and the probability of job-to-job transitions pin down 7 and k.

The effort cost function ¢(-) affects both the average rate at which workers loose their
jobs and how this rates is linked to their current wage. ¢y and c¢; can be measured by
fitting the slope and intercept of a logistic regression on the probability of employment to
unemployment (E2U) transition conditional on current wage.

The parameter v, of the production function affects the return to worker ability x. Nor-

malizing x to be uniform on [0, 1] (at discrete uniformly spaced support), the production
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Table 4: functional form specifications

matching function p(0) =0(1 — ")~/
utility function u(w) = “{ —
production function f(z,2) =7, exp (.27 (2) + 7. - D7 (2))
worker cost function cle) = co (( —e) 1 —1)
de)=1—
unemployment benefits b(z) = f(z, QZ( )
worker type [ (z411]7¢) is a Gaussian copula with parameter p,
match TFP I'.(z41|2¢) is a Gaussian copula with parameter p,

updates to z; are computed via ¢; shared at firm level

function f can be interpreted as the quantile function of worker specific heterogeneity. Us-
ing the normal distribution ®~! gives the simple interpretation that workers’ productivity is
distributed as a log-normal distribution with log-variance 7,. The mean of that distribution
is defined by 7, which, as mentioned before, is normalized to match the mean log-wage in
the economy.

The parameter of risk aversion controls how quickly changes in productivity get trans-
mitted into wage changes. Every else kept equal, matching the total value added growth
variance and the total wage growth variance within the firm gives an indication of how risk
averse workers are.

Finally let’s consider the parameters of the worker and match productivity processes. The
values of p, and p, are learned from the variance of wage growth and the auto-covariance of
wage growth among co-workers. The statistical model presented in the first section of the
paper illustrates how the growth variance of worker is composed of both the worker specific
growth and the firm specific growth and that the auto-covariance between co-workers’ wage
growth is mostly due to the common firm specific innovation. Matching both workers’ wage

growth variance and co-variance between co-workers allows to pin down p, and p,.

4.2 Solving the model

The model is estimated by method of simulated moments. For each parameter value I solve
for the equilibrium, which is then used to simulate a representative sample. I create the

moments from the simulated data and compute the weighted distance between the simulated

21



moments and the moments measured from the Swedish data.

This approach requires resolving the model for each parameter set. I use a nested fixed
point method where I jointly solve for the worker’s problem, the firm’s problem and the
equilibrium constraint. The main difficulty resides in solving the firm problem where tackling
directly (BE-F) requires finding the promised utilities W./,» in each state of the world for the
next period. This becomes infeasible as soon as reasonable supports are considered for X and
Z.. However, the first order condition with respect to W reveals that the utility promised in
different states are linked to each other. Call ABp(z, W) the multiplier for the W = > W,/
constraint, then the first order condition for W,/ is

O (@, 2 W) =

where given A, if J is strictly concave, then all the W,/ are pinned down. This reduces
the search to one dimension. The simplification comes from the fact that the firm always
tries to insure the worker as much as possible across future states, and does this by keeping
her marginal utility constant across realizations. Indeed, we know that the derivative of J
is the inverse marginal utility. One difficulty however is that J might be weakly concave
in some regions. In that case one needs to keep track of a set of possible feasible promised
utilities W,/... Given the concavity of J this set will be an interval fully captured by its two
extremities. This means that at worst the number of the control variables is augmented by
one.

Using the marginal utility in the state space is known as the recursive Lagrangian ap-
proach as developed by Kocherlakota (1996); Marcet and Marimon (2011); Messner, Pavoni,
and Sleet (2011); Cole and Kubler (2012). The problem of non-strict concavity persists in
this formulation but Cole and Kubler (2012) show how to overcome this difficulty by keep-
ing track of the upper and lower bound of the set of solutions. Numerically I solve the firm
problem using recursive Lagrangian and do not find any such flat region. The recursive

Lagrangian for the firm problem is derived in Appendix A.7 and is given by:

P(z,2,p) = infsup f(x, 2) —w + p (u(w;) + 7(z, W)

where

P(x,z,p) :=supJ (v, 2,v) + puv.
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4.3 Estimation and standard errors (Preliminary)

Estimation of the parameters is achieved using a minimum distance estimator based on a
set of moments m,. The method is close to simulated moments, however because of the
moments are based on individual data and some are based on aggregation at the firm level,

I present it as an indirect inference estimator.

Definition 3. Given a vector m,, of moments such that /7 (m, — m(6y)) -» N'(0, %) where
0y is the true parameter, and for a given weighting matrix W,, = O(1) , I define the following

criterion:

and the associated minimum distance estimate 6,, = infy L.(0).

Because some of the moments are defined at the firm level, such as the correlation between
co-worker wage growth, n refers to the number of firms. Point estimates are computed using
a parallel version of differential evolution, see Das and Suganthan (2011) for a complete
survey. In the first stage I use a weighting matrix constructed from the inverse diagonal of
an estimate from the data of ¥ which ignores the serial correlation and the fact that the

same worker appears in several firms:
A1y —1
W, = (diag [S]) .

The computation of standard errors is based on the pseudo-likelihood estimator presented
in Chernozhukov and Hong (2003). Using MCMC rejection sampling, I can perform the
estimation in parallel, without having to compute derivatives and still obtain standard errors
on the parameters. Given the criterion L, (), with moments m,, true parameter ¢, and
weighting matrix W,,, the asymptotic variance for the minimum distance estimator 6, is

distributed according to
Vi (0, = 00) 5 N (60, 7' )

where
om(6y) g om(6y)
. 0 0
Q =lim, [ 507 ] W, XW,, 507
10%*L,(0)
R T

The full procedure requires two steps. In a first step I acquire a consistent estimate of
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Table 5: Within sample model fit (Preliminary)

HS dropout HS grad Some college
model data model data model data
Priog 0.131 0.152 0.214 0.184 0.209 0.191
(2.69e-04) (1.53e-04) (3.36e-04)
Prjyy 0.0224  0.0223 0.0284  0.0267 0.0338 0.0331
(4.01e-05) (2.27e-05) (3.21e-05)
Prgoy 0.0202  0.0249 0.0199 0.0223 0.0164 0.0143
(6.25-05) (2.67e-05) (3.05e-05)
E(Alogwy|EE) 0.0145 0.0125 0.03 0.0153 0.0257 0.0335
(1.73e-04) (8.69¢-05) (1.24e-04)
E(Alogw;|J2J) 0.0329 0.0274 0.0738  0.0306 0.0875 0.0506
(8.36e-04) (3.95e-04) (5.60e-04)
Var(logw;) 0.163 0.127 0.141 0.116 0.204 0.203
(2.09¢-04) (1.32¢-04) (3.38¢-04)
Var(Alogwy|EFE) 0.0186  0.0198 0.0171  0.0173 0.0173 0.0193
(2.38e-05) (1.61e-05) (2.42e-05)
Var(Alogw|J2J) 0.0448  0.0206 0.0353 0.018 0.0466 0.0186
(5.36e-04) (2.14e-04) (2.49¢-04)
Var(Alogyi) 0.375 0.103 0.158 0.119 0.102 0.132
(1.24e-03) (1.10e-03) (1.65¢-03)
Cov(Alogwy, Alogwj|EE) 0.00154 0.00126 0.00169 0.00167 0.0023 0.00235
(2.64e-06) (1.80e-06) (3.32¢-06)

A

f,, using an approximate weighting matrix S using bootstrap. Given a good value of 6, 1
compute a Markov chain from the posterior of the pseudo likelihood of L, (#) as described
Chernozhukov and Hong (2003) and extended to parallel chains as presented in Baragatti,
Grimaud, and Pommeret (2011). The Markov chain allows construction of an estimate of
Q and J!. J7! is obtained by taking the variance covariance matrix of the parameters
generated by the chain. € can be computed by finite differences around the optimal value 0,
by selecting draws from the chain that are close to it. A consistent estimate of ¥ can then

be constructed by simulating the model at 6, and computing the covariance matrix.

4.4 Moments and estimates

I present here the set of moments used for estimation on the different education groups.
Table 5 reports the moments in the data with their measured standard deviation and the
value of the moments in the model at the estimated parameter values. Table 6 presents the
estimated parameters for each education group.

The model matches transition probabilities and variances quite precisely across education
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Table 6: Parameter estimates (Preliminary)

HS dropout HS grad Some college

scale (log wage) 0.127 10.4 10.4
(0.000209) (0.0003) (0.0003)

risk aversion S 1.12 1.62 1.42
(0.124) (0.0408) (0.0586)

vacancy cost n-1 1.34 0.646 0.605
(0.34) (0.0753) (0.0532)

OTJ efficiency K 0.586 0.617 0.687
(0.15) (0.0238) (0.0387)
effort cost Co 0.0779 0.0498 0.0418
(0.0244) (0.0202) (0.0229)

worker heterogeneity -, 2.03 1.27 1.5
(0.303) (0.123) (0.0797)

worker type auto-cor p, 0.749 0.802 0.879
(0.0365) (0.0206) (0.0274)

match type auto-cor p, 0.765 0.962 0.978
(0.06) (0.0502) (0.0215)

groups. However at this time the model performs poorly on the average wage growth on
the job and the mean wage gain on job-to-job transitions. Those moments are related to
each other because the job-to-job transition rate, mean gain on moving and on the job
mean wage growth are linked to each other because wages increase on-the-job to lower the
worker search decision. This is a common limitation of search model which suggests that
some human capital accumulation might be happening in the data. This is absent from the

current model.

5 Empirical implications

5.1 Decomposition of permanent wage growth

I can now utilize the model to decompose observed variances into better defined welfare mea-
sures. Our concern is with the sources of uncertainty in the change of lifetime utility, however
to get measures in monetary form, I define the wage growth variance of log permanent wage
as:

E; (W41 — u_)t)2 where w; := log (u’l (rWt)) ,

where w represents the annuity wage that delivers the current level of lifetime utility, the

permanent wage equivalent to the expected lifetime utility. This is a meaningful measure
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since W; includes all possible future risk of loosing the job or the opportunities to find
new ones. Similarly we can measure equivalent permanent output that I will denote .
Considering employed workers, five mutually exclusive events can happen to them over the
course of a period: i) job loss, ii) job transition, iii) firm shock, iv) worker shock or v) none of
the above. We can decompose the permanent earning growth variance into the contributions

of those five events:

5 5
Eq (wt+1 - wt)Q = Zp(evi) -y [(wt-f—l - ZDt)Q |eVz} = ZVZ
i=1 i=1
To get the average risk in the population, I integrate the V; over the stationary distribution.
Table 7 reports this variance decomposition for the three education groups. Including p(ev;)
in the computation of V; directly accounts for the likelihood of the event.
To get an idea of the overall underlying uncertainty I compute a pass through measure

that links the growth variance in productivity to the growth variance in earnings:

Cov(Wiy1 — Wy, Yer1 — Yt)
Var(?jt—i-l - @t)

and report this value conditional on receiving a worker shock and firm shock and uncondi-
tional.

The results first tell us that the total uncertainty associated with mobility is of the same
magnitude as the uncertainty associated with productivity shocks. For high school drop
out mobility accounts for 50 percent of uncertainty and for 24 percent for college graduates.
Within mobility, job loss takes a bigger share for high school drop outs than for college
graduates. This seems intuitive given the J2.J and E2U transition rates of the two groups.
Among job stayers, firm productivity shocks represent the main source of uncertainty.

Finally the pass through measure indicates that even though different education group
suffer differently from firm and worker shock in terms of total earning uncertainty, the way
in which those uncertainty transmit seems to be the same. For both education groups, a 10
percent change productivity due to a firm shock generates a 3 percent drop in permanent
earnings. Similarly a 10 percent drop in productivity due to a worker shocks translates into

a 2 percent drop on average.
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Table 7: Permanent wage growth variance decomposition

HS dropout HS grad Some college
Growth variance shares

firm shock 4.6e-04 19.6% 1.5e-04 17.8% 3.1e-04  19.2%
worker shock 1.3e-03  54.2% 2.9e-04 34.5% 7.1e-04  44.4%
job change 1.7e-04  7.13% 1.2e-04 13.8% 1.8¢-04 11.3%

job loss 4.2¢-04  18.1% 2.8¢-04 32.4% 3.9e-04  24.3%

no shock 2.3e-05 0.968% 1.2e-05 1.36% 1.5e-05 0.933%
Passthrough coefficents

overall 0.369 0.243 0.282

worker shock  0.388 0.179 0.215

firm shock 0.348 0.271 0.328

5.2 Optimal contract and first best allocation

The failure to implement full insurance against productivity shocks comes from the lack of
commitment. To investigate how close the optimal contract comes to the first best solution
I solve the firm’s problem with observable worker actions. In this first best solution the firm
dictates to the worker the search decision and the effort provision. In this case, the wage is
flat and the firm insures against all possible future productivity uncertainty. There still is
some mobility as it can be optimal for the worker to move if the match productivity is too
low.

The transmission of risk in this model is caused by the presence of the incentive constraint
of the worker. When the worker actions are not private, the firm can chose efficiently his
decisions by punishing heavily any deviation. In that case we return to full insurance of
workers against all productivity shocks. So capturing the monetary loss associated with the
risk transmission can be thought of as the monetary loss from making the worker actions
private. This loss can be computed by solving the optimal contract problem under full
commitment but keeping the equilibrium meeting rates from the second best contract. Given
the first best Pareto frontier I compute how much more profit the first best firms would make
while promising the same value to the worker. I do this across the stationary distribution of

the economy and compute the total insurance value loss:

insurance loss := / (jFB(ac, 2, V) = J%8(x, 2, V)) h(z,z, V) dx dz dV.
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Table 8 reports this value across educational group as a share of total output. Table
9 reports the change in the stationary allocation when all firms implement the first best
contract. Surprisingly unemployment changes only by 0.2 points for the high education
group. The total amount of wage paid decreases by 16 percent, but this should not be
surprising since the contract is now fully insuring the worker, firms can pay a lower average
wage. Indeed even though mean wage decreases, overall welfare increases by about 1 percent.

Also welfare for the unemployed increases for every type and on average by 4.97 percent.

Table 8: Insurance loss due to moral-hazard, keeping equilibrium fixed

HS dropout Some college
Insurance loss 1.56% 1.91%

Table 9: Second and first best

HS dropout HS grad Some college

unemployment - - -0.21pt
output - - +5.76%

wage bill - - -16.10%
welfare - - +1.03%

welfare at birth - - +4.97%

5.3 Competitive equilibrium and the cost of search frictions

To analyze the cost associated with search frictions, I use the estimated parameters and
solve for the equilibrium solution without search frictions. This competitive equilibrium
is an extension of Harris and Holmstrom (1982) with match specific heterogeneity, moral-
hazard and a job creation cost. The moral-hazard comes from the effort on the job to keep
the match specific productivity.

As discussed in the previous section, this model will have downwards wage adjustments
because of the incentive problem and the wage will also respond to firm productivity shocks,
however it does not allow for unemployment risk unless a worker is more productive at home
than in a firm.

Table 10 gives the change in several measures between the second best equilibrium and

the frictionless equilibrium. The most striking difference is the large 40 percent welfare gain.
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Table 10: Cost of search frictions

Some college

gdp 12.4%
welfare 40.1%
prod 2.22%
wage 22.3%
mwage 13.3%

Part of this can be explained by the fact that wages go up by 22 percent, but a lot of it is
also explained by the fact that lower ability workers are now able to work and collect wages
which are higher than the flow monetary value of unemployment. Job loss takes up a bigger
share for high school dropouts since the probability of the event itself is higher, yet that

can’t account for the 15point

5.4 Policy analysis

I analyze the effect of a revenue neutral government policy that redistributes from high wages

to lower wages. I parametrize the policy as follows:

3=

W= A\wr.

I use the highest education group for the analysis, fix A = 1.2 and solve for 7 = 1.25 to
make the policy revenue neutral. To get a better understanding of the effect of the policy, I
report four sets of numbers: i) the model solved at the estimated parameters, without any
transfer, ii) use the same solution and apply transfers without adjusting decisions, iii) solve
the model again with agents knowing about the transfers, and report pre-transfer moments
and iv) post-tax moments. Figure 5 represents graphically the transfer and Table 11 reports
the computed results.

The goal of the policy is to reduce both the uncertainty in earnings growth and the
cross-sectional inequality. When applied directly on the equilibrium solution we see that
total log wage variance is reduced by 36%, and the wage growth variance is reduced by 35%.
However agents react to the introduction of the policy in a way that attenuates its direct
effect. Re-solving the model including those transfers gives a reduction in log wage variance
of only 10% and for wage growth of 30%.

The policy however also affects unemployment which goes from 4.96% to 4.56%. This
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Table 11: Revenue neutral policy

Agents do not expect transfers expect transfers
Transfers before after before after
Output 1 0.978
Unemployment 4.96% 4.69%

Total wage 1 0.992 0.962 0.961
Wage variance 0.205 0.131 0.238 0.152
Growth variance 0.0174 0.0111 0.021 0.0134

happens because the policy makes lower productivity jobs marginally more productive than
without transfers, favoring workers coming out of unemployment who apply to lower paying,
highly accessible jobs. On the other hand total output is reduced for a similar reason, worker
reallocation is not as critical and in the economy with transfers, worker will reallocate less

efficiently.

6 Conclusion

In this paper I study the different sources of uncertainty faced by workers in the labor market.
Workers are subject to individual productivity shocks and their earnings may also be affected
by the performance of their employer because of search frictions in the labor market. To
understand the way shocks get transmitted and how this might affect welfare and labor
market policy I develop an equilibrium model with search frictions, risk averse workers, firm
and worker productivity shocks. In this model I show that the optimal contract pays a wage
that smoothly tracks the joint match productivity. This implies that both worker and firm
level shocks transmit to wages, albeit only partially. In contrast to the perfectly competitive
model, on one hand firm may insure workers’ productivity shocks but on the other hand
they are able to transmit firm level shocks to wages.

I estimate the model on matched employer-employee data to estimate the relative im-
portance of different sources of uncertainty. Firm productivity shocks can account for 20%
for the overall permanent wage uncertainty, leaving mobility and worker shocks as the main
sources of risk. Firms are unable to insure workers once the employment relationship ends
making publicly provided unemployment benefits an important source of insurance. To
quantify the underlying source of uncertainty I compute a pass-trough measure of produc-
tivity shocks to earning shocks and find that 20% of worker shocks and 30% of firm shocks
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get transmitted to wages. The implication of those findings is that policies should focus on
transitions in and out of work. This is because when employed the firm will provide some
source of insurance, but the firm can’t continue to insure the worker when the relationship
ends.

An important extension to this model is to allow individuals to hold assets, which would
allow them to self insure. The inclusion of observable assets would depart only slightly
from the current version of the model but a more realistic environment would allow workers
to privately save. This creates many interesting economic questions such as how do firms
recruit among workers with different asset holdings? In preliminary analysis of such an
extension I find that firms try to hire workers with higher assets because they are easier to
incentivize: firms can backload even more or get them to pay a bond, improving retention.
Upfront payment by the worker to the firm is observed in high skill labor markets such as
partnerships in law and consulting firms.

Another extension is to allow firms to counter outside offers. Inefficient poaching hap-
pens rarely in the estimated version of the model, but it would be more realistic to have a
mechanism by which firms could optimally decide whether to counter outside offers. This

type of negotiations happen in practice in high skills markets such as CEO and academics.
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Figure 5: Policy
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A Appendix

A.1 Auxiliary model

Recall the auxiliary model described in the first section of the paper. Note that d;, appears

alone in the very first model, but is then decomposed into two different components when

value added is introduced.

Wit
Wit
Yjt
Yijt

jt

BZy + Wwij + vije
Wije—1 + 05 + &ije,
BXe + G + uji
Yjt—1 + e

THjt + Vit
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The auxiliary model presented can be recovered from the following moments:

E; {(]EiAwijt)ﬂ =o0; =0, +T10, (ml)
E;; [(Awm)Z] = 0¢ + 0} + 20, (m2)
E;; {(Ayit)Q] = ai + 2072 (mwl)

E; [Ayje - Ayja] = =0, (mw2)
E; [Ayije - Awgy] = 707, (mw2)

where E; represents the expectation over co-workers within firm j.

A.2 Existence of the equilibrium

The model presented here is similar to the one presented in Menzio and Shi (2010). The
differences are the composite functions 7 and p that now include the effort decision and the
fact that workers are now heterogenous. This means that I can apply their proof here as
long as I can derive the necessary properties on (p, 7) and show that heterogeneity does not

break any of the Lipschitz bounds.
Lemma 1 (existence). A stationary competitive search equilibrium exists.

Definition. call J the set of functions J : X x Z X V — R such that

(a) J is strictly decreasing in V/,
(b) bi-Lipschitz continuous in V'
(¢) bounded
)

(d) concave

Lemma. The operator T defined in (BE-F) is self-mapping on J.

Proof of Lemma 1 . Consider a function J € J and its image J =TJ. We start by noting
that the lottery gives us that J is concave which gives continuity and almost everywhere
differentiability. Given that, we can apply the envelope theorem to find that the derivative of
J is almost everywhere —1/u/(w*(x,y,V)). Given that we have established that the offered
wage has to be bounded, it gives that the derivative of J is also bounded in [—1/u/, —1/4/].
Given that V is itself bounded it gives us that j is also bounded. The derivative is also
strictly negative and so J is a one to one mapping. J is then also bi-Lipschitz. That
concludes the fact that J € J. O
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Lemma. Bounds on p,i [incomplete]

First I report a result from Menzio and Shi (2010) which applies directly here and states
that given 7, J, such that ||J, — J.|| < p we have that Vz,v

lp(0(z, v3,.)) = p(0(z, v, )| < ap(p) = max{2Bp +p'(0)asp, 2arp"?}
Ip(0(x, v7,)) (vi, — v) = p(O(z, v1,)) (v, = V)| < arp

that we need to use to show that it continues to apply when the effort choice of the
worker is added. Given the policy for job search the effort choice is given by § = e =
dp0(z,v7,)) (v}, —v) + v —U(z)) and so given that v itself is bounded we find new

bounds on the p and 7 functions:

[P0 =7l < arp

Hﬁn_ﬁrn < aP(ﬂ)

Lemma. The operator T' is continuous on J

Proof. This boils down to showing that 7" is K-lipschitz. Let’s take two functions Ji, Js € J
and their respective image jl, Jo. We already know that they are part of J. Then we need
to find a constant K such that ||J; — Jo|| < K||Ji — Ja||. We substitute in the J; and J
by their definition. We then bound each element separately:

171 (x, 2, V) = Folw, 2, V)| < [Julwr) — u(ws)|

+ ||ﬁ1 <I7 WI)EJ(‘I/7 Z/7 le’z’) - ﬁ?(xa WQ)EJ(J’J? 2/7 W2x’z’>”

where we now want to bound each term.
[TBD] but extremely similar to Tsuyuhara (2013) and Menzio and Shi (2010). O

A.3 Properties or worker search functions

Lemma 3. Given (x, W), v*(x,W) and e*(W) are uniquely determined, p(z, W) is continu-
ous and decreasing, 7(x, W) is increasing in W, continuously differentiable and g—v’;(x, W) =

oz, W).
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Proof. remember the definitions

v (x, W) =arg mgxp(@(x, v))(v—W)
e"(z, W) =argmax —c(e) + 6(e) BEWy(2”)
+B(1 = d(e)) (p(0(x, v"))o" + B(1 = 6(e)) (1 — p(0(x,v")))W),

and the definition of the composite functions

pla, W) =(1 = d(e"(x, W))) (1 = p(6(z, vy (z, W))))
P, W) = —cle(z, W) + B(1 = (e (x, W))p(0(, vi (x, W))) (v (z, W) = W)
+d(e" (2, W) BEwoU (2') + B(1 = o(e" (2, W) (, W)W

[ first normalize 6(e) = 1 — e ( or equivalently redefine ¢ and e such that c(e) = c¢(67'(e))),
where ¢(e) is increasing and concave. The maximization problem for v gives the following

first order condition
P (O0(z,v))(v — W)+ p(0(z,v)) =0

where given the property of p and ¢ and the equilibrium definition of § we have that the
function v — p(0(x,v)) is decreasing and strictly concave. This gives that the maximum is

unique and so v*(x, W) is uniquely defined. The first order condition for e is given by
c(e) = Bp(0(z, vi(x,W))) (vi(z, W) = W) + BW — BB, U(2')

and given the assumption that ¢ is strictly convex, we get that e*(x, W) is also uniquely
defined.
Finally we can use the envelope condition to compute the derivative of 7 with respect to

W. By definition we have

7 (x, W) = sup u(w) — c(e) + (1 — ) BBy, Wy (2') + efp(0(z, v))v + (1 — p(0(x,v)))W,

v,e

and so we get

or . . _
W(xa W) = ﬁe (l’, W)(l - p(9($, v (l’, W))) = Bp(l'a W)
which proves that 7 is continuously differentiable as long as p is continuous. O]
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A.4 Regularity properties for equilibrium functions

Lemma 2. The Pareto frontier J(x,z,V) is continuously differentiable, decreasing and

concave with respect to V' and increasing in z.

Proof of Lemma 2 . Consider the optimal contract equation:

JwzV)= swp  Som(f(w2) —wi+ Bz, WIET (', 2, Wigny))

i Wi W10

i’y

st (A 0= Zm (u(w;) + 7(z, Ws)) =V,

(72) 0= Wz - Em:r’y’a

ZT&'Z‘ =1.

We already know that J is concave because of the two point lottery. That tells us that it
is continuous and differentiable almost everywhere. Let’s then show that it is differentiable
everywhere. I follow the steps of the derivation presented in Koeppl (2006) where he shows
that in the problem with two sided limited commitment it is sufficient to have one state
realization where neither participation constraint binds to achieve differentiability of the
Pareto frontier. Given that the current problem is one sided the result works almost right
away, it just needs to be extended to include a search decision.

For a fixed s = (z,z), let’s consider a point V where it’s not differentiable and call
(w, 71, Wigrar, Wl) the firm’s action at that point. This action is by definition feasible and
delivers © to the worker. From that strategy I am going to construct a continuum that
delivers any V around V. Keeping (71, Wigr»r, W;) the same, I defined w*(V) = u=1(V = V).

I then define the function J(s,v) as the value that uses strategy
(w*(V) =u (V- V),ﬁl,mm/y/,ﬁ/i). It is the case that the strategy is feasible since
all constraints remain satisfied. By definition of J we have that J(s,V) < J (s, V) together
with J(s,V) = J(s,V). Finally because u(-) is concave, increasing and twice differentiable,
J(s,V) is also concave and twice differentiable.

We found a function concave, continuously differentiable, lower than 7 and equal to J
at V we can apply Lemma 1 from Benveniste and Scheinkman (1979) which gives us that
J (s,v) is differentiable at ©. We then conclude that 7 is differentiable everywhere. Finally
let’s show that J(z, z,v) is increasing in z.

Let’s consider two different values z; < z5. Call ; the history contingent policy starting

at (z, z;,v). Policy & will deliver identical utility to the worker in all histories independently
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of whether it started at z; or z3. I then compare the value of using & at (x,z,v) and
(x, z9,v). Given that the worker will be promised the same utility in both cases and given
that the process on x and z are independent we can write the probability of each history A!

as the the product on the probability on the history on z and the probability on x

T (x,2,0/&) Z > B (flan ) = w') mon(a [2) 7 (2 ]2) s 0(1),

(zt,2t)

where 7, ; is the productivity process on x generated by I'; , 7. ; is the process on 2z generated
by g(z,t), and 7s5,(&;) is the composition of the leaving probabilities p(xt, W*) prescribed by

the policy &. We can then compare the following difference:

j(l’, 22, U|f1) - j(I7 21, U|€1) -
S5 Bt o) (mep(222) — T2 ) T (2 |2) s (61),

to(at,2t)

where we finally use the fact that the transition matrix on z is assumed to be monotonic, in
which case we get that all future distributions conditional on z5 will stochastically dominate
distributions conditional on z;. Given the stochastic dominance of 7, ;(z|z2) over . +(2%|29)

and the monotonicity of f(z,z) in z we get:
Vot Y f(at ) (1) — ma(2f]2)) > 0

which gives the result. See Dardanoni (1995) for more on properties of monotonic Markov

chains. O

A.5 Characterization of the optimal contract
Lemma. For a given (x,z), a higher wage always means higher lifetime utility.

Proof. This is a direct implication of the concavity of J and the envelope condition:

0T (z,z,v) 1

v ' (w)’

and given also the concavity of u(-), we get that w and vy are always moving in the same

direction. O
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Proposition 1 (optimal contract). For each viable match (x, z), independent of the lottery
realization, the wage policy is characterized by a target wage w*(z,z), which is increasing

i z such that:

wy <w (zy,2e) = wy < wppq < w'(wy, z)  incentive to search less

wy > w(ry,ze) = Wy, z) < wipr < wg  incentive to search more
where the target wage is characterized by the zero expected profit condition for the firm:
\V/l', z Ex’z’\xzj(xla Z/, W$’z’) =0

Proof of Lemma 1 . We start again from the list of first order conditions and we want to

find a relationship for wage change.

J(x,z,V)=sup Zﬂ'i (f(x, 2) —w; + Bp(x, W) EJ (2, 2/, Wm/z/))

i Wi W 11

'z

st (\) 0= Zm; (u(w;) + (2, Wy)) =V,

(%) 0=W;, —EWip.,

ZTQ’ =1.

From the envelope theorem and the f.o.c. for the wage, we get that the wage in the current

-1
i=1,2 u(w)= i =— <%Z(x,z,v)> :

period is given by

Now that also means that the wage next period in state (2, 2") will be given by

o] =~ e W),
I then look at the first order condition with respect to W;
i Bpo(z, W)BT (2, 2, Wiary) + BAmir! (x, W) + miyi = 0,
where I substitute r’(z, W) = p(x, W), derived in Lemma (A.3):

7,00y (2, Wi)ET (&', 2", Wigny ) + BAmip(x, W) + miry; = 0.
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Using the f.o.c. for W;,/.,, which is

~ oJ rot
/Bp(l', Wl)%(x ) % Wix’y’) — %= 07

I get the following expression:

Wiﬁﬁv(l', WZ)EJ(IE,, Z/, Wix’z’) -+ ﬂ)\ﬂ'lﬁ([l?, Wz) + Wiﬁﬁ(fﬂ, WJ%Z(!E/, Z/, Wix’z’) = O

Focusing on p;(x, W) > 0 and m; > 0 since otherwise, the worker is leaving the current firm
and the next period wage is irrelevant, we first rewrite:

Do (I ) Wl) ot 0.J /

~ E 'CC)ZaWix’z’ +)\+7$,’U5/ =0.

FCRTA J( ) 5y, (5 0s)
I finally use the envelope condition to extract the wage next period from the last term on
the right

ﬁ’u (Ia Wz) 1 1

%EJ x/)Z/7Wi$’Z’ —

Y

W (W) B u'(w)
where since p, (x, W;) > 0 the inverse marginal utility and consequently wages move according
to the sign of expected surplus to the firm. This shows that within each realization of the
lottery, the wage will move according to expected profit.

Randomizing over increase and decrease: the next step is to investigate if it is ever
optimal for the firm to randomize over a wage increase and a wage decrease at the same time.
If the lottery is degenerate then the result holds directly. We are left with non-degenerate
lotteries. In that case the first order condition with respect to = must be equal to zero
(otherwise we are at a corner solution, which is degenerate). Taking the first order condition

with respect to 7 gives:

Bz, W)ET (¢, 2, Wipar) + ABF(x, Wh) = Bp(x, W2)ET (¢, 2/, Wauror) + ABF(z, Wa),
which we can reorder in

Bp(x, WET (2, 2, Wiw) = Bp(x, W2)ET (2, 2, Wawyer) = AB (F(x, Wa) — #(z, W1)) .

Now, suppose that the randomization is over two expected profits of opposite sign for the

firm where 1 is positive and 2 is negative. The left hand side is then positive. But in that
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case we know that Wy < V' < Wj because higher wages give higher utilities in all states of
the world, and so they do so also in expectation. This gives us that 7(x, Ws) < 7(z, Wy).
Given that A is equal to inverse marginal utility it is positive. But then the right hand side
is negative, so we have a contradiction. So independent of the randomization, the wage will
move according to the sign of the expected profit.

Monotonicity in z: the final step is to show that the efficiency wage is increasing
in z. We already know that J(z,z,V) is increasing in z and decreasing and concave in
V. Let’s consider z; < z and associated efficiency wage w*(z, z1). We want to show that
w*(z,z1) < w*(x,z2). Call & the optimal policy starting at state J(x,z1,V)) where V)
delivers w*(x, z1) and using & at (x, z3), the worker receives Vi and is paid w*(z, 2z;). The
firm makes more profit than at z; since f(x,z) is increasing in z and EJ is larger as well.
The optimal policy at (z, z2, V) will pay a higher wage than w*(z, z1) to trade some output
for a longer expected lifespan, but continue to choose positive EJ. So we found a wage
wi > w*(x, z;) such that EJ is still positive. This last point implies that w} < w*(z, 29)

and concludes. O

A.6 From matching function to tightness

I use the following matching function

po) = ¢
q(0) = p(0)/0=0""

this gives us that
p=q",
and we have the following equilibrium equality for ¢(-) from the free entry condition:

we end up with

1 =
sl = (Iwz0)

Now since I am worried about keeping this function sufficiently concave to insure unique-

ness of the worker search decision, I use v < 1/2.
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A.7 Recursive Lagrangian formulation

Ignoring the lottery for now, we have the following recursive formulation for J

J(x, 2, V)= sup fla,2) —w; + plx, W))ET (2', 2/, Wigr,)
ﬂi,Wi,Wm/y/

st (A) 0=u(w)+7(x,W;) =V,

From which we can construct the Pareto problem
P(x,z,p) =sup J(z,z,v)+ pu.

Formally, P is also the Legendre-Fenchel transform of P, see Villani (2003). We seek a
recursive formulation. I first substitute the definition of 7 and the constraint on A in P to

get

P(z,z,p)= sup f(x,2) —w+ Bpla, W)ET (2', 2, W) + pV
Vaw,WW_r

st (A 0=u(w)+7(x, W)=V,
(’y) 0=WwW — EWI/Z/.

at which point I can substitute in the V' constraint:

P(z,z,p) = sup f(x,2) —w+ Bple, W)ET (2', 2, W) + p (u(w;) + 7(z, W))

Viaw ,WW .

s.t (’7) 0=W — EWx’z’-
then I append the constraint (v)with weight Svyp(x, W)

P(x.z,p) = inf sup f(2,2) —w+ p(u(w;) + 7z, W))
TV, W\W,

+6ﬁ(l‘, W)Ej(x,7 Z/a Wx’z’)
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which finally we recombine as

P(x,z,p) = inf sup f(x,2) —w+ p(u(w) + 7(z, W))
T Vaw, W W

_5715('1.7 W)
+8p(x, WET (', 2/, W) + YEW 10

the final step is to move the sup to the right hand side to get:

P(z,z,p) = ierf sup flz,2) —w+ p(u(w;) + 7(x, W))

_B’)/ﬁ(xv W)

+8p(x, W)E | sup T (', 2", Wrr) + YW

x! 2!

where we recognize the expression for P and so we are left with solving the following saddle

point functional equation (SPFE):

Pz, z,p) = iIvlf sup f(z,2z) —w+ p (u(w;) + 7(x, W))

— Byp(z, W) + Bp(x, W)EP(2', 2", 7). (SPFE)

From the solution of this equation we can reconstruct the lifetime utility of the worker,
and the profit function of the firm

JP
V(xVZ?p) = aip(cvzvp)

J(z,z,v) = Plz,z,p (x,2,0)) — p*(z,2,0) - v.

A.8 Notations

Here is a summary of the notations used in the paper:
B is discount factor
u: R — R is utility function
¢ : R — R is effort function
e is effort level of the worker
w is wage

x is worker productivity
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Table 12: Uncertainty at firm level per industry and education group

Construction etc. Manufacturing Retail trade Services

educl
or 0.00498 0.00365 0.00298 0.00471
(0.000336) (0.000151) (0.000215) (0.000376)
0w  0.0245 0.0212 0.0197 0.0279
(0.00297) (0.00107) (0.00176) (0.00228)
firm perc 16.9 14.7 13.2 14.5
educ2
oy 0.0059 0.00321 0.00431 0.00481
(0.000434) (0.000164) (0.000401) (0.000509)
Ow 0.024 0.0185 0.02 0.0254
(0.00302) (0.00125) (0.00269) (0.00334)
firm perc 19.8 14.8 17.7 15.9
educ3
or 0.00558 0.00225 0.00521 0.00757
(0.000768) (0.000122) (0.000547) (0.000299)
ow  0.0267 0.0187 0.0224 0.0231
(0.00342) (0.00124) (0.00328) (0.00173)
firm perc 17.3 10.7 18.9 24.6

z is match productivity

f(z, z) is output of worker x in match z

K is search efficiency on the job

7 is vacancy cost

0 is market tightness for market (x,v)

v is value a worker will get in a given submarket

V' is value promised to the worker when entering a period

W; is expected value promised to the worker in realization i of the lottery
W, is value promised to the worker in realization (2, 2’) of the shock
v1(z, z,v) is the search policy of the worker

e(z, z,v) is the effort policy of the worker
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B Additional Data information

C Model extensions

C.1 firm heterogeneity [TBC]

If worker shocks are small enough, firm permanent heterogeneity can be added to the model

and the equilibrium continues to exists. I briefly show this here.

C.2 severance payments [TBC]|

I present here an extended version of the model with side payments when the worker loses
his job. The firm is allowed to choose a value g delivered to the worker when he moves to
unemployment.

I start from the recursive form and

f(8) —w—g(1—q) + Bpie, ) BI (8", vy )+
p(u(w) +r(e, g)) — pbpi(e, g)(e — Evy)

where
r(e,g) = sup —c(q) + (1 — ¢)BEU (', g) + qBp(v)v + q(1 — p(v))Be.

’U7q

and so we get

re(e) = —q"B(1—p*) = —Ppi(e)
ree) = (1—=q")BEU,(2',g)

which we can recombine in
f(s) —w+ plu(w) +r(e)) — uBpi(e)e + Bpi(e)EP(s', 1)
and we get 3 FOC: w p and e and g

e=EP,(s,u)

—,07”6(6) - Mﬁpe(ev g)e - lj’pe(ea g) + ﬁpe(ev g)EP(Slv :u) =0
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—(1—¢q) + pry — uBpge + Bp,EP =0

I should combine the terms in p/(e) to get EP — (p + p)e

(1t — p)p1(e) = Bpy(e)EIL (s, p)

and we can recombine the equation in g to find the optimal severance package:

(1 - q)(BEU, —1) = — P gy,
= L-a
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