
Supplementary Appendix for
“Discretizing Unobserved Heterogeneity”1

In this supplementary appendix we provide details on various aspects of the theory, and we report

additional results.

B Conditional first step

In this section of the appendix we study some theoretical properties of GFE based on a conditional

first-step, under a series regression specification. We first study the case where αi0 does not vary over

time, and then turn to the time-varying case.

B.1 Convergence rate for the first step

We make the following assumption, where g(x, α) = EXit=x , αi0=α[h(Yit, Xit)], and fμ denotes the

conditional density of Xit given μi0 = μ.

Assumption B1.

(i) There exists an integrable function ωX such that fμ(x) ≤ ωX(x) for all x, μ.

The maximum eigenvalue of
´
Pq(x)Pq(x)

′ωX(x)dx is O(1), and supα
´ ‖g(x, α)‖2ωX(x)dx is

bounded.

There exists a constant c > 0, independent of q and T , such that the minimum eigenvalue of
1
T

∑T
t=1 Pq(Xit)Pq(Xit)

′ is larger than c+ op(1), uniformly in i.

(ii) Let A denote the parameter space for αi. For all α ∈ A, g(·, α) ∈ G ⊂ L2(ωX).

‖g(x, α′)− g(x, α)‖ ≤ C(x)‖α′ − α‖, where 1
NT

∑N
i=1

∑T
t=1C(Xit)

2 = Op(1).

There exist a constant a > 0 and a sequence of functions βq(·) such that supx,α ‖g(x, α) −
Pq(x)

′βq(α)‖ = O(q−a).

(iii) Let εit = h(Yit, Xit)− g(Xit, αi0). Then 1
N

∑N
i=1

∥∥∥ 1
T

∑T
t=1 Pq(Xit)εit

∥∥∥2 = Op(q/T ).

(iv) There exists a Lipschitz-continuous mapping ψ : G → A such that ψ(g(·, αi0)) = αi0.

Parts (i) and (ii) in Assumption B1 will be satisfied when using a suitable family Pq. The condition

on the maximum eigenvalue of
´
Pq(x)Pq(x)

′ωX(x)dx in part (i) is without loss of generality. In part

(ii), a = s/r for splines and power series, where s is the number of continuous derivatives in x of

1We thank the IFAU for access to, and help with, the Swedish administrative data.
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g(x, α), and r is the dimension of Xit. Part (iii) holds under standard conditions on moments and

serial dependence. Part (iv) is an injectivity condition.

To illustrate these conditions, suppose Xit is scalar, and consider a family of polynomials that

are orthonormal with respect to the uniform distribution on [−1, 1]. If ωX is bounded by a constant

B > 0, then
´
Pq(x)Pq(x)

′ωX(x)dx is bounded by BIq, where Iq is the q × q identity matrix, so its

maximum eigenvalue is bounded. If in addition we assume that fμ(x) ≥ b for all x, μ, where b > 0 is

a constant, then Eμi0=μ (Pq(Xit)Pq(Xit)
′) ≥ bIq for all μ and q. Newey (1997, Theorem 1) provides

conditions under which, for given i, the minimum eigenvalue of 1
T

∑T
t=1 Pq(Xit)Pq(Xit)

′ is larger than

c+ op(1), for some constant c > 0. Specifically, Newey’s conditions require that Xit be i.i.d. over time

(here, conditional on μi0), and supx ‖Pq(x)‖F ≤ ζq with qζ2q/T = o(1), where ‖A‖F = (TrA′A)1/2

denotes the Fröbenius norm of A. From this he obtains that ‖ 1
T

∑T
t=1 Zit‖F = op(1), where Zit =

Pq(Xit)Pq(Xit)
′ − Eμi0

(Pq(Xit)Pq(Xit)
′).

In the present context, to guarantee that the minimum eigenvalue of 1
T

∑T
t=1 Pq(Xit)Pq(Xit)

′ be

larger than c + op(1) uniformly in i, we need the stronger uniform condition maxi ‖ 1
T

∑T
t=1 Zit‖F =

op(1). Results from random matrix theory are helpful to provide primitive conditions for this. For

example, using the matrix Bernstein theorem (Theorem 1.4. in Tropp, 2012), under the assumption

that Xit are independent over time conditional on μi0, we have for all ε > 0, μ, q, and T :

Pr

(∥∥∥∥∥ 1T
T∑
t=1

Zit

∥∥∥∥∥ ≥ ε

∣∣∣∣μi0 = μ

)
≤ q exp

⎛⎝−T ε2

2(ζ4q +
ζ2qε

3 )

⎞⎠ , (B1)

where recall that ‖A‖ denotes the spectral norm of A. A related inequality holds under a form of

serial dependence (β-mixing), see Banna, Merlevède and Youssef (2016). Using the union bound

and the fact that ‖A‖F ≤ √
q ‖A‖, (B1) implies that maxi ‖ 1

T

∑T
t=1 Zit‖F = op(1), provided that

qζ4q ln(Nq)/T → 0.

Part (iv) is an injectivity condition that generalizes the one in the unconditional case. As an

example, consider the probit model of Example 2: Yit = 1{X ′
itθ0 + αi0 + Uit ≥ 0}, where Uit are

i.i.d. standard normal, independent of all Xit’s. Taking h(Yit, Xit) = Yit, we have g(Xit, αi0) =

Φ(X ′
itθ0 + αi0). Provided that αi0 and Xit are such that g is bounded between ε > 0 and 1 − ε, and

denoting c0 =
´
ωX(x)dx > 0 and c1 = c−1

0

´
xωX(x)dx, the following function satisfies part (iv):

ψ(g(·, α)) = c−1
0

ˆ
Φ−1(g(x, α))ωX(x)dx− c′1θ0.

We now state our main result on the convergence rate of the conditional kmeans estimator, where:

Bα(K) = min
(α̃,k1,...,kN )

1

N

N∑
i=1

‖αi0 − α̃(ki)‖2

denotes the approximation error associated with αi0 alone.
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Theorem B1. Suppose that αi0 is time-invariant, of fixed dimension. Let parts (i) to (iii) in As-

sumption B1 hold. Then, as N,T,K, q tend to infinity:

1

N

N∑
i=1

ˆ ∥∥∥Pq(x)′β̂q(k̂i)− g(x, αi0)
∥∥∥2 ωX(x)dx = Op(q/T ) +Op(q

−2a) +Op(Bα(K)).

If in addition part (iv) in Assumption B1 holds, then:

1

N

N∑
i=1

∥∥∥ψ (Pq(·)′β̂q(k̂i))− αi0

∥∥∥2 = Op(q/T ) +Op(q
−2a) +Op(Bα(K)).

Note that the second part in Theorem B1 implies (19) in the main text. As a special case,

Theorem B1 implies that, when g(x, α) = Pq(x)
′βq(α) (i.e., there is no remainder term), then the rate

is Op(1/T ) + Op(Bα(K)). As an example, this rate is achieved when Xit has finite support and we

use indicator functions as Pq. More generally, when g is nonparametric and covariates are continuous,

a larger number of covariates increases q−2a, thus requiring choosing a larger q and incurring a larger

q/T . Nevertheless, even in this nonparametric case, the resulting rate may improve relative to the one

of our baseline two-step estimation.

To give a concrete example, assume that there are two covariates and g has four continuous

derivatives, so a = 2. Suppose also that αi0 is scalar and μi0 has dimension two, and that (αi0, μ
′
i0)

has an absolutely continuous density, so the underlying dimension of heterogeneity is d = 3. Taking q ∝
T 1/5 we obtain a rate of Op(T

−4/5)+Op(K
−2) in the conditional case. In contrast, the corresponding

rate in the unconditional case is Op(T
−1)+Op(K

−2/3). When N and T grow at the same rate, the best

rates achievable are Op(T
−4/5) and Op(T

−2/3), respectively (since K ≤ N). In addition, the required

numbers of groups to achieve these rates are K ∝ T 2/5 and T , respectively. This shows that the

conditional method achieves a better rate, and that the number of groups needed to achieve that rate

is smaller. As in other applications of series methods, smoothness assumptions are critical to ensure

good performance. Under sufficient smoothness, the theoretical difference between the two methods

increases as the dimension of Xit increases.

Proof of Theorem B1. Let:

(β
q
, {ki}) = argmin

(b,{ki})

N∑
i=1

T∑
t=1

∥∥g(Xit, αi0)− Pq(Xit)
′b(ki)

∥∥2 .
Let also:

(α, {k∗i }) = argmin
(α̃,{ki})

N∑
i=1

‖αi0 − α̃(ki)‖2 .
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By Assumption B1 (ii), we have, for a and βq(·) defined in that assumption:

1

NT

N∑
i=1

T∑
t=1

∥∥∥g(Xit, αi0)− Pq(Xit)
′β
q
(ki)

∥∥∥2
≤ 1

NT

N∑
i=1

T∑
t=1

∥∥g(Xit, αi0)− Pq(Xit)
′βq(α(k

∗
i ))
∥∥2

≤ 1

NT

N∑
i=1

T∑
t=1

‖g(Xit, αi0)− g(Xit, α(k
∗
i ))‖2 +Op(q

−2a)

= Op(Bα(K)) +Op(q
−2a). (B2)

Moreover, since:

1

NT

N∑
i=1

T∑
t=1

∥∥∥h(Yit, Xit)− Pq(Xit)
′β̂q(k̂i)

∥∥∥2 ≤ 1

NT

N∑
i=1

T∑
t=1

∥∥∥h(Yit, Xit)− Pq(Xit)
′β
q
(ki)

∥∥∥2 ,
we have, using that h(Yit, Xit) = g(Xit, αi0) + εit:

1

NT

N∑
i=1

T∑
t=1

∥∥∥g(Xit, αi0)− Pq(Xit)
′β̂q(k̂i)

∥∥∥2
≤ 1

NT

N∑
i=1

T∑
t=1

∥∥∥g(Xit, αi0)− Pq(Xit)
′β
q
(ki)

∥∥∥2
+

2

NT

N∑
i=1

T∑
t=1

ε′it
(
Pq(Xit)

′β̂q(k̂i)− Pq(Xit)
′β
q
(ki)

)
. (B3)

Hence, using parts (ii) and (iii) in Assumption B1, equation (B2), and the Cauchy Schwarz and

triangle inequalities, we obtain:

1

NT

N∑
i=1

T∑
t=1

∥∥∥Pq(Xit)′βq(αi0)− Pq(Xit)
′β̂q(k̂i)

∥∥∥2

≤ Op(1)

⎛⎝ 1

N

N∑
i=1

∥∥∥∥∥ 1T
T∑
t=1

Pq(Xit)
′εit

∥∥∥∥∥
2
⎞⎠ 1

2 (
1

N

N∑
i=1

∥∥∥β̂q(k̂i)− β
q
(ki)

∥∥∥2)
1
2

+Op(q
−2a) +Op(Bα(K))

≤ Op

(√
q

T

)(
2

N

N∑
i=1

∥∥∥β̂q(k̂i)− βq(αi0)
∥∥∥2 + 2

N

N∑
i=1

∥∥∥β
q
(ki)− βq(αi0)

∥∥∥2)
1
2

+Op(q
−2a) +Op(Bα(K)).
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It thus follows from part (i) in Assumption B1 that:

1

N

N∑
i=1

∥∥∥β̂q(k̂i)− βq(αi0)
∥∥∥2

≤ Op

(√
q

T

)(
2

N

N∑
i=1

∥∥∥β̂q(k̂i)− βq(αi0)
∥∥∥2 + 2

N

N∑
i=1

∥∥∥β
q
(ki)− βq(αi0)

∥∥∥2)
1
2

+Op(q
−2a) +Op(Bα(K)),

hence that:

1

N

N∑
i=1

∥∥∥β̂q(k̂i)− βq(αi0)
∥∥∥2

≤ Op

(
1

N

N∑
i=1

∥∥∥β
q
(ki)− βq(αi0)

∥∥∥2)+Op

( q
T

)
+Op(q

−2a) +Op(Bα(K))

= Op

( q
T

)
+Op(q

−2a) +Op(Bα(K)),

where the last identity comes from the fact that, by (B2) and parts (i) and (ii) in Assumption B1:

1

N

N∑
i=1

∥∥∥β
q
(ki)− βq(αi0)

∥∥∥2 = Op(q
−2a) +Op(Bα(K)).

Hence, using parts (i) and (ii) in Assumption B1 we have:

1

N

N∑
i=1

ˆ ∥∥∥Pq(x)′β̂q(k̂i)− g(x, αi0)
∥∥∥2 ωX(x)dx

≤ 1

N

N∑
i=1

ˆ ∥∥∥Pq(x)′β̂q(k̂i)− Pq(x)
′βq(αi0)

∥∥∥2 ωX(x)dx+Op(q
−2a)

≤ Op(1)
1

N

N∑
i=1

∥∥∥β̂q(k̂i)− βq(αi0)
∥∥∥2 +Op(q

−2a)

= Op

( q
T

)
+Op(q

−2a) +Op(Bα(K)).

Lastly, we prove the second part in Theorem B1. We have, using the first part and part (iv) in

Assumption B1:

1

N

N∑
i=1

∥∥∥ψ (Pq(·)′β̂q(k̂i))− αi0

∥∥∥2
=

1

N

N∑
i=1

∥∥∥ψ (Pq(·)′β̂q(k̂i))− ψ(g(·, αi0))
∥∥∥2

≤ Op(1)
1

N

N∑
i=1

ˆ ∥∥∥Pq(x)′β̂q(k̂i)− g(x, αi0)
∥∥∥2 ωX(x)dx

= Op

( q
T

)
+Op(q

−2a) +Op(Bα(K)).
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B.2 Choice of K

In the conditional case, we define:

Q̂X(K) =
1

NT

N∑
i=1

T∑
t=1

∥∥∥Pq(Xit)′β̂(k̂i)− Pq(Xit)
′β̂qi

∥∥∥2 ,
where β̂qi = argminb

∑T
t=1 ‖h(Yit, Xit)− Pq(Xit)

′b‖2. We let:

K̂ = min
K≥1

{
K : Q̂X(K) ≤ γV̂X

}
, (B4)

where V̂X = 1
NT

∑N
i=1

∑T
t=1

∥∥∥Pq(Xit)′β̂qi − Pq(Xit)
′βq(αi0)

∥∥∥2 + op(q/T ).

For example, when εit are independent over time and homoskedastic, one can take:

V̂X =
q

NT 2

N∑
i=1

T∑
t=1

‖h(Yit, Xit)− Pq(Xit)
′β̂qi‖2.

Corollary B1. Let Assumption B1 hold. Suppose that (1 + γ)V̂X = Op(q/T ). Take K ≥ K̂. Then:

1

N

N∑
i=1

∥∥∥ψ (Pq(·)′β̂q(k̂i))− αi0

∥∥∥2 = Op(q/T ) +Op(q
−2a).

Note that, to implement the formula for K̂, we need to compute β̂qi. An alternative approach,

which we use in the simulations, is to replace β̂qi by a conditional kmeans estimate β̂(k̂i) obtained

using a large number of groups Kmax. In all the models that we consider in the simulation section

(Section G), we use this approach with Kmax = 30.

Proof of Corollary B1. Using (B4) and the triangle inequality, we have:

1

NT

N∑
i=1

T∑
t=1

∥∥∥Pq(Xit)′βq(αi0)− Pq(Xit)
′β̂q(k̂i)

∥∥∥2
≤ 2

NT

N∑
i=1

T∑
t=1

∥∥∥Pq(Xit)′βq(αi0)− Pq(Xit)
′β̂qi

∥∥∥2
+

2

NT

N∑
i=1

T∑
t=1

∥∥∥Pq(Xit)′β̂qi − Pq(Xit)
′β̂q(k̂i)

∥∥∥2
= Op

(
V̂X

)
+ op(q/T ) +Op

(
γV̂X

)
= Op

( q
T

)
.

The result then follows from the same arguments as in the proof of Theorem B1.
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B.3 Time-varying heterogeneity

The conditional kmeans first step can be adapted to models where αit0 varies over time. Let us consider

two cases. A first situation is when αit0 = α(ξi0, λ
(o)
t ), where λ

(o)
t is a vector of observed time-varying

factors. In our theory we require time-stationarity, so λ
(o)
t needs to be a stationary factor. In this case

the baseline conditional kmeans method is unchanged, subject to including λ
(o)
t in the set of covariates

Xit. Moreover, Theorem B1 holds exactly as in the time-invariant case.

A more general situation is when αit0 = α(ξi0, λt0), where λt0 is a vector of unobserved factors.

Here we focus on the case where the factors may depend unrestrictedly on time (i.e., we take p = T ),

although it would be easy to modify the setup to allow for heterogeneity varying only between sub-

periods but not within, as in Theorem 1. We modify the first step algorithm in the following way.

Algorithm 3. (conditional kmeans, time-varying heterogeneity)

• Given initial values for bq(1, 1), ..., bq(K,T ), iterate between the following two steps until con-

vergence:

• Given bq(1, 1), ..., bq(K,T ), compute ki = argmink=1,...,K

∑T
t=1 ‖h(Yit, Xit)− Pq(Xit)

′bq(k, t)‖2
for all i.

• Given k1, ..., kN , compute bq(k, t) = argminb
∑N
i=1 1{ki = k} ‖h(Yit, Xit)− Pq(Xit)

′b‖2 for all

k, t.

Adapting the theory requires additional assumptions and different arguments. We start with a

definition.

Definition 1. (sub-Gaussianity) A random vector Z is sub-Gaussian if there exists a scalar constant

λ > 0 such that E [exp(τ ′Z)] ≤ exp(λ ‖τ‖2) for all τ ∈ RdimZ .

We make the following assumption, where g(x, α) = EXit=x , αit0=α[h(Yit, Xit)].

Assumption B2.

(i) Let εit = h(Yit, Xit)−g(Xit, αit0). The NTq×1 random vector (Pq(Xit)εit)i=1,...,N,t=1,...,T satisfies

Definition 1.

(ii) There exists a Lipschitz-continuous mapping ψ : G → A such that ψ(g(·, αit0)) = αit0.

Part (i) in Assumption B2 requires Pq(Xit)εit to be sub-Gaussian (e.g., Vershynin, 2010). This

is stronger than the corresponding requirements in Theorem 1. For example, i.i.d. Gaussian random

variables and i.i.d. bounded random variables are sub-Gaussian. More generally, this assumption
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allows for dependence across observations. As an example, a random vector W ∼ N (0,Σ) is sub-

Gaussian when the maximal eigenvalue of Σ is bounded from above by 2λ. This allows for weak

dependence, across both individual units and time periods.

We have the following result.

Corollary B2. Let Assumption 1 hold, for time-varying αit0 and α Lipschitz-continuous in its first

argument. Let parts (i) and (ii) in Assumption B1 hold, and let part (i) in Assumption B2 hold. Then,

as N,T,K, q tend to infinity:

1

NT

N∑
i=1

T∑
t=1

ˆ ∥∥∥Pq(x)′β̂q(k̂i, t)− g(x, αit0)
∥∥∥2 ωX(x)dx

= Op((lnK)/T ) +Op(q
−2a) +Op(qK/N) +Op(Bα(K)).

If in addition part (ii) in Assumption B2 holds, then:

1

NT

N∑
i=1

T∑
t=1

∥∥∥ψ (Pq(·)′β̂q(k̂i, t))− αit0

∥∥∥2
= Op((lnK)/T ) +Op(q

−2a) +Op(qK/N) +Op(Bα(K)).

From Corollary B2 we obtain a convergence rate for conditional kmeans that depends on the

underlying dimension dα of αit0, instead of the dimension d that appears in Theorem 1. Also, note that,

in the time-invariant case, under the assumptions of Corollary B2 one can show that the conditional

kmeans estimator satisfies the following convergence rate: Op(min(q, lnK)/T ) + Op(qK/(NT )) +

Op(q
−2a) +Op(Bα(K)), which is as least as fast as the rate in Theorem B1.

Proof of Corollary B2. Let:

(β
q
, {ki}) = argmin

(b,{ki})

N∑
i=1

T∑
t=1

∥∥g(Xit, αit0)− Pq(Xit)
′b(ki, t)

∥∥2 ,
and let:

(α, {k∗i }) = argmin
(α̃,{ki})

N∑
i=1

T∑
t=1

‖αit0 − α̃(ki, t)‖2 .

We have, as in the proof of Theorem B1:

1

NT

N∑
i=1

T∑
t=1

∥∥∥g(Xit, αit0)− Pq(Xit)
′β
q
(ki, t)

∥∥∥2 = Op(Bα(K)) +Op(q
−2a). (B5)
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Moreover, we have:

1

NT

N∑
i=1

T∑
t=1

∥∥∥g(Xit, αit0)− Pq(Xit)
′β̂q(k̂i, t)

∥∥∥2
≤ 1

NT

N∑
i=1

T∑
t=1

∥∥∥g(Xit, αit0)− Pq(Xit)
′β
q
(ki, t)

∥∥∥2
+

2

NT

N∑
i=1

T∑
t=1

(Pq(Xit)εit)
′
(
β̂q(k̂i, t)− β

q
(ki, t)

)
. (B6)

The main difference with the proof of Theorem B1 is how to bound the cross-product term in

(B6). To do so, we apply a version the Hanson-Wright tail inequality for quadratic forms, due to Hsu,

Kakade and Zhang (2012, Theorem 2.1), which allows for dependent data.

Lemma B1. (Hsu, Kadade and Zhang, 2012) Let Z be a random vector such that, for some λ > 0,

E [exp(τ ′Z)] ≤ exp(λ ‖τ‖2) for all τ ∈ RdimZ . Let Q be a positive semi-definite matrix. Then, for all

s > 0:

Pr
[
Z ′QZ > 2λ trQ+ 4λ

√
s trQ2 + s4λ ‖Q‖

]
≤ exp(−s).

Let Vit = Pq(Xit)εit. We will bound:

1

NT

N∑
i=1

T∑
t=1

(Pq(Xit)εit)
′
(
β̂q(k̂i, t)− β

q
(ki, t)

)
=

1

NT

N∑
i=1

T∑
t=1

V t(k̂i, ki)
′
(
β̂q(k̂i, t)− β

q
(ki, t)

)
,

where V t(k, k
′) denotes the t-specific linear projection of Vit on group indicators 1{k̂i = k} and

1{ki = k′}. For this, we will use the Cauchy Schwarz inequality and bound:

1

NT

N∑
i=1

T∑
t=1

∥∥∥V t(k̂i, ki)∥∥∥2 .
Let, for given partitions {ki1}, {ki2}: 1

NT

∑N
i=1

∑T
t=1

∥∥V t(k1i, k2i)∥∥2 = v′Qv
NT , where we have defined

v = (V ′
11, ..., V

′
NT )

′, Q is an NTq ×NTq projection matrix with trQ ≤ 2KTq, Q2 = Q, and ‖Q‖ = 1.

By Lemma B1 and part (i) in Assumption B2 we have, for all s:

Pr
[
v′Qv > 4λKTq + 4λ

√
2KTqs+ 4λs

]
≤ exp(−s),

so, using that 2
√
ab ≤ a+ b:

Pr
[
v′Qv > 8λKTq + 6λs

] ≤ exp(−s),

hence, for all b > 0:

Pr

[
v′Qv
NT

> b

]
≤ exp

[
−
(
bNT

6λ
− 4KTq

3

)]
.
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Lastly, by the union bound, given that the number of partitions {ki1} ∩ {ki2} is bounded by K2N :

Pr

[
1

NT

N∑
i=1

T∑
t=1

‖V t(k̂i, ki)‖2 > b

]
≤ K2N max

({ki1},{ki2})
Pr

[
1

NT

N∑
i=1

T∑
t=1

‖V t(ki1, ki2)‖2 > b

]

≤ exp

[
2N lnK +

4KTq

3
− bNT

6λ

]
.

This implies that:

1

NT

N∑
i=1

T∑
t=1

‖V t(k̂i, ki)‖2 = Op((lnK)/T ) +Op(qK/N).

The rest of the proof is as in Theorem B1.

C Model-based iteration and one-step GFE estimator

In this section we provide details on model-based iterated GFE, and we outline a continuously updated

counterpart, the “one-step” GFE estimator.

C.1 Model-based iteration

We are going to derive a bound on the within-group mean squared error of αi0, similarly to Corollary

1, for the case of iterated GFE.

Let (θ̂, α̂) denote the two-step GFE estimator, with partition {k̂i}, and let {k̂(2)i } denote the

partition after one iteration. We use the same notation as in the proof of Theorem 1. In particular,

we define δ in the same way. We have:

N∑
i=1

p∑
j=1

�ij

(
α̂j(k̂i, θ̂), θ̂

)
≤

N∑
i=1

p∑
j=1

�ij

(
α̂j(k̂

(2)
i , θ̂), θ̂

)
.

Hence, expanding, we obtain:

− 1

2

N∑
i=1

p∑
j=1

(
α̂j(k̂

(2)
i , θ̂)− α̂j(k̂i, θ̂)

)′
vαij

(
aij , θ̂

)(
α̂j(k̂

(2)
i , θ̂)− α̂j(k̂i, θ̂)

)

≤
N∑
i=1

p∑
j=1

vij

(
α̂j(k̂i, θ̂), θ̂

)(
α̂j(k̂

(2)
i , θ̂)− α̂j(k̂i, θ̂)

)
,

where aij is between α̂
j(k̂i, θ̂) and α̂

j(k̂
(2)
i , θ̂).

Let us first assume that p does not grow with the sample size. Using similar arguments as in the

proof of Theorem 1 we then have:

1

Np

N∑
i=1

p∑
j=1

∥∥∥α̂j(k̂(2)i , θ̂)− α̂j(k̂i, θ̂)
∥∥∥2 = Op

⎛⎝ 1

Np

N∑
i=1

p∑
j=1

∥∥∥vij (α̂j(k̂i, θ̂), θ̂)∥∥∥2
⎞⎠ .
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Using Theorem 1, we then have:

1

Np

N∑
i=1

p∑
j=1

∥∥∥α̂j(k̂(2)i , θ̂)− α̂j(k̂i, θ̂)
∥∥∥2 = Op

⎛⎝ 1

Np

N∑
i=1

p∑
j=1

∥∥∥vij (αji0, θ0)∥∥∥2
⎞⎠+Op(δ).

Moreover, since p does not grow with the sample size:

1

Np

N∑
i=1

p∑
j=1

∥∥∥vij (αji0, θ0)∥∥∥2 = Op

(
1

T

)
,

so:

1

Np

N∑
i=1

p∑
j=1

∥∥∥α̂j(k̂(2)i , θ̂)− α̂j(k̂i, θ̂)
∥∥∥2 = Op(δ).

Using again Theorem 1, we obtain:

1

Np

N∑
i=1

p∑
j=1

∥∥∥α̂j(k̂(2)i , θ̂)− αji0

∥∥∥2 = Op(δ).

It follows that:

1

Np

N∑
i=1

p∑
j=1

∥∥∥αj0(k̂(2)i )− αji0

∥∥∥2 = Op(δ). (C1)

Let us now turn to the case where p grows with the sample size. In that case, one can bound:∥∥∥∥∥∥ 1

Np

N∑
i=1

p∑
j=1

vij

(
α̂j(k̂i, θ̂), θ̂

)(
α̂j(k̂

(2)
i , θ̂)− α̂j(k̂i, θ̂)

)∥∥∥∥∥∥
2

≤
∥∥∥∥∥∥ 1

Np

N∑
i=1

p∑
j=1

vij

(
αji0, θ0

)(
α̂j(k̂

(2)
i , θ̂)− α̂j(k̂i, θ̂)

)∥∥∥∥∥∥
2

+Op(δ)
1

Np

N∑
i=1

p∑
j=1

∥∥∥α̂j(k̂(2)i , θ̂)− α̂j(k̂i, θ̂)
∥∥∥2

=

∥∥∥∥∥∥ 1

Np

N∑
i=1

p∑
j=1

vj

(
k̂i, k̂

(2)
i

)(
α̂j(k̂

(2)
i , θ̂)− α̂j(k̂i, θ̂)

)∥∥∥∥∥∥
2

+Op(δ)
1

Np

N∑
i=1

p∑
j=1

∥∥∥α̂j(k̂(2)i , θ̂)− α̂j(k̂i, θ̂)
∥∥∥2

≤
⎡⎣ 1

Np

N∑
i=1

p∑
j=1

∥∥∥vj (k̂i, k̂(2)i )∥∥∥2 +Op(δ)

⎤⎦ 1

Np

N∑
i=1

p∑
j=1

∥∥∥α̂j(k̂(2)i , θ̂)− α̂j(k̂i, θ̂)
∥∥∥2 ,

where vj(k, k
′) denotes the j-specific linear projection of vij

(
αji0, θ0

)
on group indicators 1{k̂i = k}

and 1{k̂(2)i = k′}.
Moreover, under a sub-Gaussianity assumption, and using a union bound argument together with

Lemma B1, we will obtain the following bound:

1

Np

N∑
i=1

p∑
j=1

∥∥∥vj (k̂i, k̂(2)i )∥∥∥2 = Op

(
lnK

T

)
+Op

(
Kp

NT

)
.

Combining results, and using Theorem 1, we obtain a bound that, similarly to (C1), depends on

K−2/d, where d is the underlying dimension of (α′i0, μ
′
i0). Hence we obtain a convergence rate, but no

improvement, for iterated GFE relative to the baseline two-step approach.
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C.2 One-step GFE estimator

A continuously updated counterpart to the iterated estimator is the one-step GFE estimator, which

is defined as follows: (
θ̂
1step

, α̂1step, {k̂1stepi }
)
= argmax

(θ,α,{ki})

N∑
i=1

ln fi (α (ki) , θ) , (C2)

where the maximum is taken with respect to all possible parameter values (θ, α) and all possible

partitions {ki} of {1, ..., N} into at most K groups. This corresponds to the classification maximum

likelihood estimator of Bryant and Williamson (1978); see also Hahn and Moon (2010) and Bonhomme

and Manresa (2015). Unlike in two-step GFE, (C2) requires optimizing the likelihood function with

respect to every partition and parameter value. This poses two difficulties. First, the estimator may

be substantially more computationally intensive than two-step methods. Second, this complicates

the statistical analysis since the discrete classification depends on parameter values and the objective

function of the one-step estimator is therefore not smooth. In the case of the kmeans estimator, Pollard

(1981, 1982) derived asymptotic properties for fixed K and T , as N tends to infinity. Deriving the

properties of one-step estimators in (C2) as N,T,K tend jointly to infinity is an interesting avenue

for future work.

D Two-way grouped fixed-effects

In this section of the appendix we consider two-way GFE estimators, and we derive an expansion in

the spirit of Theorem 1.

We have the following lemma, the proof of which is analogous to that of Lemma 1, and omitted

for brevity. Here we consider the general case where the precision of hi is S, and the precision of wt

is J , while in the main text we focus on the case where S = T and J = N .

Lemma D1. Suppose that there exist random vectors hi and wt, with fixed dimensions, and Lipschitz-

continuous functions ϕ and φ, such that hi = ϕ(ξi0) + op(1),
1
N

∑N
i=1 ‖hi − ϕ(ξi0)‖2 = Op (1/S),

wt = φ(λt0) + op(1), and 1
T

∑T
t=1 ‖wt − φ(λt0)‖2 = Op (1/J) as N,T, S, J tend to infinity. Then we

have, as N,S,K tend to infinity:

1

N

N∑
i=1

∥∥∥ĥ(k̂i)− ϕ(ξi0)
∥∥∥2 = Op

(
1

S

)
+Op (Bξ(K)) ,

and, as T, J, p tend to infinity:

1

T

T∑
t=1

∥∥∥ŵ(l̂t)− φ(λt0)
∥∥∥2 = Op

(
1

J

)
+Op (Bλ(p)) ,

where Bλ(p) is defined analogously as Bξ(K).
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Assumption D1. (regularity, two-way)

(i) (Y ′
it, X

′
it, ξ

′
i0, λ

′
t0)

′, i = 1, .., N , t = 1, ..., T , are i.i.d.

�it(αit, θ) is three times differentiable in both its arguments, for all i, t.

The parameter space Θ for θ0 is compact, the spaces for ξi0 and λt0 are compact, and θ0 belongs

to the interior of Θ.

(ii) N,T, S, J,K, p tend jointly to infinity.

supξ,λ,α,θ |Eξi0=ξ,λt0=λ(�it(α, θ))| = O(1), and similarly for the first three derivatives of �it in both

its arguments.

The minimum (respectively, maximum) eigenvalue of (−∂2	it(α,θ)∂α∂α′ ) is bounded away from zero

(resp., infinity) with probability one, uniformly in i, t, α, θ.

The third derivatives of �it(α, θ) are Op(1), uniformly in i, t, α, θ.

1
NT

∑N
i=1

∑T
t=1[�it(αit0, θ0) − Eξi0,λt0(�it(αit0, θ0))]

2 = Op(1), and similarly for the first three

derivatives of �it in both its arguments.

(iii) For all θ, ξ, and λ, let α(θ, ξ, λ) = argmaxα Eξi0=ξ, λt0=λ(�it(α, θ)).

infξ,λ,θ Eξi0=ξ, λt0=λ(−∂
2	it(α(θ,ξ,λ),θ)

∂α∂α′ ) is positive definite.

E [�it(α(θ, ξi0, λt0), θ)] has a unique maximum at θ0 on Θ, and its second derivative −H is neg-

ative definite.

(iv) sup
˜ξ,λ,α

‖ ∂
∂ξ′
∣∣
ξ=˜ξ

Eξi0=ξ,λt0=λ(vec
∂2	it(α,θ0)
∂θ∂α′ )‖ = O(1).

sup
ξ,˜λ,α

‖ ∂
∂λ′
∣∣
λ=˜λ

Eξi0=ξ,λt0=λ(vec
∂2	it(α,θ0)
∂θ∂α′ )‖ = O(1).

sup
˜ξ,λ,α

‖ ∂
∂ξ′
∣∣
ξ=˜ξ

Eξi0=ξ,λt0=λ(vec
∂2	it(α,θ0)
∂α∂α′ )‖ = O(1).

sup
ξ,˜λ,α

‖ ∂
∂λ′
∣∣
λ=˜λ

Eξi0=ξ,λt0=λ(vec
∂2	it(α,θ0)
∂α∂α′ )‖ = O(1).

sup
˜ξ,λ,θ

‖ ∂
∂ξ′
∣∣
ξ=˜ξ

Eξi0=ξ,λt0=λ(
∂	it(α(θ,ξ,λ),θ)

∂α )‖ = O(1).

sup
ξ,˜λ,θ

‖ ∂
∂λ′
∣∣
λ=˜λ

Eξi0=ξ,λt0=λ(
∂	it(α(θ,ξ,λ),θ)

∂α )‖ = O(1).

(v) Ehi=h,ξi0=ξ,wt=w,λt0=λ(
∂	it(α(θ,ξ,λ),θ)

∂α ) and Ehi=h,ξi0=ξ,wt=w,λt0=λ(vec
∂
∂θ′
∣∣
θ0

∂	it(α(θ,ξ,λ),θ)
∂α ) are twice

differentiable with respect to h and w, with first and second derivatives that are uniformly bounded

in h ∈ H, w ∈ W, ξ, λ, and θ ∈ Θ, where H andW denote the supports of hi and wt, respectively.

‖Varhi=h,ξi0=ξ,wt=w,λt0=λ(
∂	it(α(θ,ξ,λ),θ)

∂α )‖ = O(1), uniformly in h, w, ξ, λ, θ.

‖Varhi=h,ξi0=ξ,wt=w,λt0=λ(vec
∂
∂θ′
∣∣
θ0

∂	it(α(θ,ξ,λ),θ)
∂α )‖ = O(1), uniformly in h, w, ξ, λ.
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Let us denote:

s̃it =
∂�it(αit0, θ0)

∂θ
+ Eξi0,λt0

(
∂2�it(αit0, θ0)

∂θ∂α′

)[
Eξi0,λt0

(
−∂

2�it(αit0, θ0)

∂α∂α′

)]−1
∂�it(αit0, θ0)

∂α
, (D1)

and:

H̃ =E

[
Eξi0,λt0

(
−∂

2�it(αit0, θ0)

∂θ∂θ′

)

− Eξi0,λt0
(
∂2�it(αit0, θ0)

∂θ∂α′

)[
Eξi0,λt0

(
−∂

2�it(αit0, θ0)

∂α∂α′

)]−1

Eξi0,λt0

(
∂2�it(αit0, θ0)

∂α∂θ′

)]
. (D2)

Theorem D1. Let the conditions in Lemma D1 hold. Suppose that Bξ(K) = Op(K
− 2

d ) and Bλ(p) =

Op(p
− 2

dλ ). Suppose that α and μ are Lipschitz-continuous in both arguments. Suppose that there exist

two Lipschitz-continuous functions ψ and Ψ such that ξi0 = ψ(ϕ(ξi0)) and λt0 = Ψ(φ(λt0)). Lastly,

let Assumption D1 hold. Then, as N,T, S, J,K, p tend to infinity such that Kp/(NT ) tends to zero,

we have:

θ̂ = θ0 + H̃−1 1

NT

N∑
i=1

T∑
t=1

s̃it +Op

(
1

S

)
+Op

(
1

J

)
+Op

(
Kp

NT

)
+Op

(
K− 2

d

)
+Op

(
p
− 2

dλ

)
+ op

(
1√
NT

)
. (D3)

Proof of Theorem D1

In the proof we closely follow the steps of the proof of Theorem 1. Let, for all θ ∈ Θ, k ∈ {1, ...,K},
and l ∈ {1, ..., p}:

α̂(k, l, θ) = argmaxα

N∑
i=1

T∑
t=1

1{k̂i = k}1{l̂t = l}�it (α, θ) , (D4)

and define α(θ, ξ, λ) according to Assumption D1 (iii). Let also δ = 1
S + 1

J + Kp
NT +K− 2

d + p
− 2

dλ .

A key step in the proof is to establish the following main intermediate results:

1

NT

N∑
i=1

T∑
t=1

∂�it(α̂(k̂i, l̂t, θ0), θ0)

∂θ
=

1

NT

N∑
i=1

T∑
t=1

∂

∂θ

∣∣∣∣
θ0

�it (α(θ, ξi0, λt0), θ) +Op (δ) , (D5)

1

NT

N∑
i=1

T∑
t=1

∂2

∂θ∂θ′

∣∣∣∣
θ0

(
�it

(
α̂(k̂i, l̂t, θ), θ

)
− �it (α(θ, ξi0, λt0), θ)

)
= op(1). (D6)

Consistency of θ̂. The consistency proof follows Theorem 1 closely. First, we show that α (θ, ξ, λ)

is Lipschitz-continuous, with coefficients that are uniformly bounded with respect to θ, ξ and λ.

Next, we define a(k, l, θ) = α(θ, ψ(ĥ (k)),Ψ(ŵ (l))), and we use Lemma D1 to show that:

sup
θ∈Θ

1

NT

N∑
i=1

T∑
t=1

∥∥∥a(k̂i, l̂t, θ)− α (θ, ξi0, λt0)
∥∥∥2 = Op(δ). (D7)

14



Next, we use that, for all θ:

N∑
i=1

T∑
t=1

�it

(
a(k̂i, l̂t, θ), θ

)
≤

N∑
i=1

T∑
t=1

�it

(
α̂(k̂i, l̂t, θ), θ

)
, (D8)

and we expand both sides of this inequality as in the proof of Theorem 1 to obtain, for all θ ∈ Θ:

1

NT

N∑
i=1

T∑
t=1

∥∥∥α̂(k̂i, l̂t, θ)− α(θ, ξi0, λt0)
∥∥∥2

≤ Op

⎡⎣( 1

NT

N∑
i=1

T∑
t=1

‖v(k̂i, l̂t, θ)‖2
) 1

2
(

1

NT

N∑
i=1

T∑
t=1

∥∥∥α̂(k̂i, l̂t, θ)− a(k̂i, l̂t, θ)
∥∥∥2)

1
2

⎤⎦+Op(δ),

where v(k, l, θ) denotes the mean of vit(α(θ, ξi0, λt0), θ) in the intersection of groups k̂i = k and l̂t = l.

As in the proof of Theorem 1, the key step is to show:

1

NT

N∑
i=1

T∑
t=1

∥∥∥v(k̂i, l̂t, θ)∥∥∥2 = Op (δ) . (D9)

Let, for all θ, h, w, ξ, λ:

ρ(h, ξ, w, λ, θ) = Ehi=h,ξi0=ξ,wt=w,λt0=λ(vit(α(θ, ξ, λ), θ)),

and let, for all i, t, θ:

ζit(θ) = vit(α(θ, ξi0, λt0), θ)− ρ(hi, ξi0, wt, λt0, θ).

Expanding ρ(hi, ξi0, wt, λt0, θ) around hi = ϕ(ξi0) and wt = φ(λt0), we have:

ρ(hi, ξi0, wt, λt0, θ) =ρ(ϕ(ξi0), ξi0, φ(λt0), λt0, θ) +
∂ρ(ϕ(ξi0), ξi0, φ(λt0), λt0, θ)

∂h′
(hi − ϕ(ξi0))

+
∂ρ(ϕ(ξi0), ξi0, φ(λt0), λt0, θ)

∂w′ (wt − φ(λt0)) +Op

(
1

S

)
+Op

(
1

J

)
.

Hence, taking expectations:

0 =Eξi0,λt0(vit(α(θ, ξi0, λt0), θ)))

=Eξi0,λt0 [ρ(hi, ξi0, wt, λt0, θ)]

=ρ(ϕ(ξi0), ξi0, φ(λt0), λt0, θ) +
∂ρ(ϕ(ξi0), ξi0, φ(λt0), λt0, θ)

∂h′
Eξi0,λt0(hi − ϕ(ξi0))

+
∂ρ(ϕ(ξi0), ξi0, φ(λt0), λt0, θ)

∂w′ Eξi0,λt0(wt − φ(λt0)) +Op

(
1

S

)
+Op

(
1

J

)
.

It follows that:

1

NT

N∑
i=1

T∑
t=1

‖ρ(hi, ξi0, wt, λt0, θ)‖2 = Op

(
1

S

)
+Op

(
1

J

)
.
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We thus only need to bound:

E

[
1

NT

N∑
i=1

p∑
t=1

‖ζ(k̂i, l̂t, θ)‖2
]

=
1

NT

K∑
k=1

p∑
l=1

E

[∑N
i=1

∑T
t=1 1{k̂i = k}1{l̂t = l}Ehi,ξi0,wt,λt0 (ζit(θ)

′ζit(θ))∑N
i=1

∑T
t=1 1{k̂i = k}1{l̂t = l}

]
,

where we have used that observations are independent across i and t. To bound this quantity, we use

part (v) in Assumption D1. We thus obtain (D9).

The rest of the consistency part is as in the proof of Theorem 1.

Proof of (D5). To show (D5), we are now going to show that:

1

NT

N∑
i=1

T∑
t=1

{
vθit

(
α̂(k̂i, l̂t)− αit0

)
+ Eξi0,λt0

(
vθit

) [
Eξi0,λt0 (v

α
it)
]−1

vit

}
= Op (δ) , (D10)

where we omit references to θ0 and αit0.

We will bound, in turn:

A ≡ 1

NT

N∑
i=1

T∑
t=1

Eξi0,λt0
(
vθit

) [
Eξi0,λt0 (v

α
it)
]−1

vαit

(
α̂(k̂i, l̂t)− αit0 + (vαit)

−1vit

)
,

B ≡ 1

NT

N∑
i=1

T∑
t=1

(
vθit (v

α
it)

−1 − Eξi0,λt0
(
vθit

) [
Eξi0,λt0 (v

α
it)
]−1

)
vαit

(
α̂(k̂i, l̂t)− αit0

)
.

To bound A, the key term is:

A3 ≡ 1

NT

N∑
i=1

T∑
t=1

Eξi0,λt0
(
vθit

) [
Eξi0,λt0 (v

α
it)
]−1

(−vαit)
(
(−vαit)−1vit − ṽ(k̂i, l̂t)

)
,

where ṽ is defined analogously as in the proof of Theorem 1.

Let z(ξ, λ)′ = Eξi0=ξ,λt0=λ
(
vθit
) [
Eξi0=ξ,λt0=λ (v

α
it)
]−1

. We have:

A3 =
1

NT

N∑
i=1

T∑
t=1

(
z(ξi0, λt0)

′ − z∗
(
k̂i, l̂t

)′)
vit +

1

NT

N∑
i=1

T∑
t=1

(
z∗
(
k̂i, l̂t

)′ − z̃
(
k̂i, l̂t

)′)
vit,

where z̃ (k, l) and z∗ (k, l) are defined analogously as in the proof of Theorem 1.

To see that the first term in A3 is Op(δ), we use an argument similar to the one we used in the

proof of Theorem 1. Let: ζit = vit − Ehi,ξi0,wt,λt0(vit). We have, as in the proof of Theorem 1:

1

NT

N∑
i=1

T∑
t=1

∥∥Ehi,ξi0,wt,λt0(vit)
∥∥2 = Op

(
1

S

)
+Op

(
1

J

)
. (D11)

Moreover, we have:

1

NT

N∑
i=1

T∑
t=1

∥∥∥z(ξi0, λt0)− z∗(k̂i, l̂t)
∥∥∥2 = Op(δ). (D12)
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Since ζit are independent across i and t, with zero mean conditional on h1, ..., hN , g1, ..., gT ,

ξ10, ..., ξN0, and λ10, ..., λT0, we thus have:

E

⎡⎣∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

(
z(ξi0, λt0)

′ − z∗
(
k̂i, l̂t

)′)
vit

∥∥∥∥∥
2
⎤⎦

≤ 2

(
O

(
1

S

)
+O

(
1

J

))
E

[
1

NT

N∑
i=1

T∑
t=1

∥∥∥∥z(ξi0, λt0)′ − z∗
(
k̂i, l̂t

)′∥∥∥∥2
]

+ 2E

⎡⎣∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

(
z(ξi0, λt0)

′ − z∗
(
k̂i, l̂t

)′)
ζit

∥∥∥∥∥
2
⎤⎦

= O

(
δ

S

)
+O

(
δ

J

)
+

1

N2T 2

N∑
i=1

T∑
t=1

E
[(
z(ξi0, λt0)

′ − z∗
(
k̂i, l̂t

)′)
Ehi,ξi0,wt,λt0

[
ζitζ

′
it

](
z(ξi0, λt0)

′ − z∗
(
k̂i, l̂t

)′)]
= O

(
δ

S

)
+O

(
δ

J

)
+O

(
δ

NT

)
= O(δ2).

The second term in A3 is also Op(δ), using similar arguments as in the proof of Theorem 1 and

equation (D9). This shows that A = Op(δ).

Let us now turn to B. Let π′it = vθit (v
α
it)

−1 − Eξi0,λt0
(
vθit
) [
Eξi0,λt0 (v

α
it)
]−1

. As in the proof of

Theorem 1, the key step is to bound:

B3 ≡ 1

NT

N∑
i=1

T∑
t=1

π′itv
α
it

(
α̃(k̂i, l̂t)− αit0

)
=

1

NT

N∑
i=1

T∑
t=1

π′itv
α
it

(
α∗(k̂i, l̂t)− αit0

)
+

1

NT

N∑
i=1

T∑
t=1

π′itv
α
it

(
α̃(k̂i, l̂t)− α∗(k̂i, l̂t)

)
,

where α̃(k, l) and α∗(k, l) are defined analogously as in the proof of Theorem 1.

The first term is Op(δ), since the τ it = π′itv
α
it are independent across i and t with zero mean given

ξi0, λt0. The second term is:

1

NT

N∑
i=1

T∑
t=1

π′itv
α
it

(
α̃(k̂i, l̂t)− α∗(k̂i, l̂t)

)
=

1

NT

N∑
i=1

T∑
t=1

π̃(k̂i, l̂t)
′vαit

(
α̃(k̂i, l̂t)− α∗(k̂i, l̂t)

)
.

As in the proof of Theorem 1, 1
NT

∑N
i=1

∑T
t=1 ‖π̃(k̂i, l̂t)‖2 = Op(δ). Moreover, we have:

1

NT

N∑
i=1

T∑
t=1

‖α̃(k̂i, l̂t)− α∗(k̂i, l̂t)‖2 = Op(δ).

This shows that B3 = Op(δ), hence that B = Op(δ). This implies that (D5) holds.
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Proof of (D6). The proof of (D6) follows the same steps as the corresponding part in the proof

of Theorem 1. The key step is to show that:

1

NT

N∑
i=1

T∑
t=1

∥∥∥∥∥∂α̂(k̂i, l̂t, θ0)∂θ′
− ∂αj(θ0, ξi0, λt0)

∂θ′

∥∥∥∥∥
2

= op (1) . (D13)

The proof of (D13) follows similar arguments as in the proof of Theorem 1.

E Further results for fixed p

In this section we derive two additional properties of GFE estimators, in the case where p is fixed;

that is, when heterogeneity is time-invariant and its dimension does not grow with the sample size.

Without loss of generality we set p = 1. For simplicity, in this section we assume that S = T , and we

remove p and j from the notation. Finally, we denote ηi0 = (α′i0, μ
′
i0)

′ the full vector of heterogeneity.

E.1 Expansion of two-step GFE

We start with a result that shows that the expansion in Theorem 1 continues to hold under suitable

conditions, when the concavity in α of Assumption 3 part (iia) fails to hold.

Corollary E1. Let the conditions in Theorem 1 hold, with ξi0 = ηi0, except that Assumption 3 part

(iia) is replaced by the following:

(i) For all ε > 0, infθ,η=(α′,μ′)′ inf‖(α̃,˜θ)−(α,θ)‖>ε Eηi0=η[�i(α, θ)− �i(α̃, θ̃)] > 0.

(ii) The function �̂i(θ) = �i(α̂(k̂i, θ), θ) is three times differentiable on a neighborhood of θ0 (that is,

the function is three times differentiable for almost all sample realizations), where α̂(k, θ) for all

k is the solution of (3) given any θ ∈ Θ. Moreover, 1
N

∑N
i=1 ‖∂

2̂	i(θ)
∂θ∂θ′ ‖2 = Op(1) uniformly in a

neighborhood of θ0, and similarly for the third derivative of �̂i.

Then, for p fixed as N,T,K tend to infinity, we have:

θ̂ = θ0 +H−1 1

N

N∑
i=1

si +Op

(
1

T

)
+Op

(
K− 2

d

)
+ op

(
1√
NT

)
, (E1)

and:

1

N

N∑
i=1

∥∥∥α̂(k̂i)− αi0

∥∥∥2 = Op

(
1

T

)
+Op

(
K− 2

d

)
. (E2)

Condition (i) in Corollary E1 is an identification condition. Condition (ii) is a differentiability

condition on the sample GFE objective function. Such an assumption is not needed in order to

characterize the first-order properties of fixed-effects estimators, since, under suitable conditions, fixed-

effects estimators of individual effects are uniformly consistent in the sense that maxi=1,...,N ‖α̂i −
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αi0‖ = op(1); see, e.g., Hahn and Kuersteiner (2011). In contrast, our characterization of GFE

estimators is based on establishing a rate of convergence for the average 1
N

∑N
i=1 ‖α̂(k̂i)−αi0‖2. Lastly,

the score si and Hessian H in Corollary E1 are the same as in Theorem 1.

Proof of Corollary E1. The proof follows closely the proof of Theorem 1. The beginning of

the consistency proof is identical. Here, δ = 1/T + K−2/d. One difference is that we introduce the

fixed-effects estimator of αi, for given θ, which is defined as α̂i(θ) = argmaxα �i(α, θ). We have, for

all θ:
N∑
i=1

�i

(
a(k̂i, θ), θ

)
≤

N∑
i=1

�i

(
α̂(k̂i, θ), θ

)
≤

N∑
i=1

�i (α̂i(θ), θ) . (E3)

Moreover, expanding the fixed-effects log-likelihood around αi(θ) ≡ α(θ, ηi0), we have (as in Arel-

lano and Hahn, 2007, for example):

1

N

N∑
i=1

�i (α̂i(θ), θ) =
1

N

N∑
i=1

�i (αi (θ) , θ) +Op

(
1

T

)
,

uniformly in θ.

Now, for some ai(θ) between α̂i (θ) and a(k̂i, θ), we have:

1

N

N∑
i=1

�i

(
a(k̂i, θ), θ

)
− 1

N

N∑
i=1

�i (α̂i (θ) , θ) =
1

2N

N∑
i=1

(
a(k̂i, θ)− α̂i (θ)

)′
vαi (ai (θ) , θ)

(
a(k̂i, θ)− α̂i (θ)

)
.

We then obtain, using similar arguments as in the proof of Theorem 1, that the following equality

holds pointwise in θ: ∣∣∣∣∣ 1N
N∑
i=1

�i

(
α̂(k̂i, θ), θ

)
− 1

N

N∑
i=1

�i (α̂i (θ) , θ)

∣∣∣∣∣ = Op(δ). (E4)

In turn, from the uniform convergence of the fixed-effects log-likelihood:

sup
θ∈Θ

∣∣∣∣∣ 1N
N∑
i=1

�i (α̂i(θ), θ)− 1

N

N∑
i=1

�i (αi (θ) , θ)

∣∣∣∣∣ = op(1),

we obtain, using similar arguments as above:

sup
θ∈Θ

∣∣∣∣∣ 1N
N∑
i=1

�i

(
α̂(k̂i, θ), θ

)
− 1

N

N∑
i=1

�i (α̂i (θ) , θ)

∣∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣∣ 1N
N∑
i=1

�i

(
a(k̂i, θ), θ

)
− 1

N

N∑
i=1

�i (α̂i (θ) , θ)

∣∣∣∣∣
≤ sup
θ∈Θ

∣∣∣∣∣ 1N
N∑
i=1

�i

(
a(k̂i, θ), θ

)
− 1

N

N∑
i=1

�i (αi (θ) , θ)

∣∣∣∣∣+ op(1) = op(1).

Consistency of θ̂ then follows, as in the proof of Theorem 1.
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Let us now show equation (A3). From (E4) evaluated at θ0 we have, for some ai between α̂(k̂i, θ0)

and α̂i (θ0), and omitting from now on the reference to θ0 for conciseness:

Op(δ) =
1

N

N∑
i=1

�i (α̂i)− 1

N

N∑
i=1

�i(α̂(k̂i)) =
1

2N

N∑
i=1

(
α̂(k̂i)− α̂i

)′
(−vαi (ai))

(
α̂(k̂i)− α̂i

)
≥ 0. (E5)

Now, by the assumptions of Theorem 1 part (a), there exists a constant ε > 0 and a positive

definite matrix Σ such that:

inf
η=(α′,μ′)′

inf
‖α̃−α‖≤ε

Eηi0=η (−vαi (α̃)) ≥ Σ.

For this ε we will first show that:

1

N

N∑
i=1

1
{
‖α̂(k̂i)− αi0‖ > ε

}
= Op(δ). (E6)

Showing (E6) will allow us to control the difference α̂(k̂i)− αi0 in an average sense.

To see that (E6) holds, let ιi = 1
{
‖α̂(k̂i)− αi0‖ ≤ ε

}
, and note that by (E5) we have, since

�i (α̂i) ≥ �i(α̂(k̂i)) for all i:

0 ≤ 1

N

N∑
i=1

(1− ιi)
(
�i (α̂i)− �i(α̂(k̂i))

)
= Op(δ).

Now, by part (i) in the assumptions of the corollary, and using that maxi=1,...,N ‖α̂i − αi0‖ = op(1)

and Assumption 3 part (iia), we have:

min
i=1,...,N

inf
‖αi−αi0‖>ε

�i (α̂i)− �i(αi) ≥ inf
η=(α′,μ′)′

inf
‖α̃−α‖>ε

Eηi0=η [�i (α)− �i(α̃)] + op(1) ≥ ζ + op(1),

where ζ > 0 is a constant. Hence 1
N

∑N
i=1(1− ιi)(ζ + op(1)) = Op(δ), from which (E6) follows.

Next, by Assumption 3 part (iia), supη=(α′,μ′)′ supα̃
∥∥vαi (α̃)− Eηi0=η (vαi (α̃))∥∥ = op (1). We thus

have:

min
i=1,...,N

inf
‖αi−αi0‖≤ε

(−vαi (αi)) ≥ Σ+ op(1). (E7)

Using (E5) this implies that: 1
N

∑N
i=1 ιi

∥∥∥α̂(k̂i)− α̂i

∥∥∥2 = Op(δ). Hence, using in addition (E6) and the

fact that the parameter space for αi is compact, we have:

1

N

N∑
i=1

∥∥∥α̂(k̂i)− α̂i

∥∥∥2 = 1

N

N∑
i=1

ιi

∥∥∥α̂(k̂i)− α̂i

∥∥∥2 + 1

N

N∑
i=1

(1− ιi)
∥∥∥α̂(k̂i)− α̂i

∥∥∥2 = Op(δ). (E8)

Given (E8), the rest of the proof of (A3) is as in the proof of Theorem 1, with some simplifications

due to the fact that here p does not grow with the sample size.

However, the proof of (A4) is different from the one in Theorem 1. To proceed, let:

ι̃(k) = 1

{
N∑
i′=1

1{k̂i′ = k}
(
−vαi′

(
α̂(k̂i′)

))
≥ 1

2
Σ

}
.
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We are first going to show that:

1

N

N∑
i=1

(
1− ι̃

(
k̂i

))
= Op(δ). (E9)

Let ε > 0 as in (E6), and define ιi accordingly. From (E6) it suffices to show that:

1

N

N∑
i=1

ιi

(
1− ι̃

(
k̂i

))
= Op(δ).

With probability approaching one we have: mini : ιi=1

(
−vαi

(
α̂(k̂i)

))
≥ 2

3Σ. When this condition is

satisfied we have:

ιi

(
1− ι̃

(
k̂i

))
= ιi

(
1− 1

{
N∑
i′=1

1{k̂i′ = k̂i}
(
−vαi′

(
α̂(k̂i′)

))
− 1

2
Σ ≥ 0

})

≤ ιi

⎛⎝1− 1
⎧⎨⎩(−vαi (α̂(k̂i)))− 1

2
Σ +

∑
i′ �=i
1{k̂i′ = k̂i}

(
−vαi′

(
α̂(k̂i′)

))
≥ 0

⎫⎬⎭
⎞⎠

≤ ιi

(
1− 1

{
N∑
i′=1

ιi′1{k̂i′ = k̂i}1
6
Σ ≥ −

N∑
i′=1

(1− ιi′)1{k̂i′ = k̂i}
(
−vαi′

(
α̂(k̂i′)

))})

≤ 1
{
N∑
i′=1

ιi′1{k̂i′ = k̂i} ≤ 6

σ

(
max

i′=1,...,N

∥∥∥−vαi′ (α̂(k̂i′))∥∥∥) N∑
i′=1

(1− ιi′)1{k̂i′ = k̂i}
}

≤ 1
{
N∑
i′=1

1{k̂i′ = k̂i} ≤
(
1 +

6

σ
max

i′=1,...,N

∥∥∥−vαi′ (α̂(k̂i′))∥∥∥) N∑
i′=1

(1− ιi′)1{k̂i′ = k̂i}
}
,

where σ denotes the minimum eigenvalue of Σ. Hence we have, with probably approaching one:

0 ≤ 1

N

N∑
i=1

ιi

(
1− ι̃

(
k̂i

))
≤ 1

N

N∑
i=1

1

{
N∑
i′=1

1{k̂i′ = k̂i} ≤
(
1 +

6

σ
max

i′=1,...,N

∥∥∥−vαi′ (α̂(k̂i′))∥∥∥) N∑
i′=1

(1− ιi′)1{k̂i′ = k̂i}
}

=
1

N

K∑
k=1

N∑
i=1

1{k̂i = k}1
{
N∑
i′=1

1{k̂i′ = k} ≤
(
1 +

6

σ
max

i′=1,...,N

∥∥∥−vαi′ (α̂(k̂i′))∥∥∥) N∑
i′=1

(1− ιi′)1{k̂i′ = k}
}

≤ 1

N

K∑
k=1

(
1 +

6

σ
max

i′=1,...,N

∥∥∥−vαi′ (α̂(k̂i′))∥∥∥) N∑
i′=1

(1− ιi′)1{k̂i′ = k} = Op

(
1

N

N∑
i′=1

(1− ιi′)

)
= Op(δ).

This shows (E9).

We are now going to show (A4). By part (ii) in the assumptions of the corollary, the Cauchy
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Schwarz inequality, and (E9), we have:∥∥∥∥∥ 1

N

N∑
i=1

(
1− ι̃(k̂i)

) ∂2

∂θ∂θ′

∣∣∣∣
θ0

�i

(
α̂(k̂i, θ), θ

)∥∥∥∥∥
2

≤ 1

N

N∑
i=1

(1− ι̃(k̂i))× 1

N

N∑
i=1

∥∥∥∥∥ ∂2

∂θ∂θ′

∣∣∣∣
θ0

�i

(
α̂(k̂i, θ), θ

)∥∥∥∥∥
2

= op(1).

Let k such that ι̃(k) = 1. Differentiating with respect to θ:
∑N
i=1 1{k̂i = k}vi(α̂(k, θ), θ) = 0 we

obtain, at θ = θ0:

∂α̂(k)

∂θ′
=

(
N∑
i′=1

1{k̂i′ = k}
(
−vαi′

(
α̂(k̂i′)

)))−1 N∑
i′=1

1{k̂i′ = k}
(
vθi′
(
α̂(k̂i′)

))′
, (E10)

where we note that, since ι̃(k) = 1,
∑N
i′=1 1{k̂i′ = k}

(
−vαi′

(
α̂(k̂i′)

))
is bounded from below by Σ/2.

Let now:

D ≡ 1

N

N∑
i=1

ι̃(k̂i)
∂2

∂θ∂θ′

∣∣∣∣
θ0

�i

(
α̂(k̂i, θ), θ

)
− 1

N

N∑
i=1

∂2

∂θ∂θ′

∣∣∣∣
θ0

�i (αi(θ), θ) .

We have, at θ0 (omitting again the reference to θ0 from the notation):

D =
1

N

N∑
i=1

{
ι̃(k̂i)

∂2�i

(
α̂(k̂i)

)
∂θ∂θ′

+ ι̃(k̂i)v
θ
i

(
α̂(k̂i)

) ∂α̂(k̂i)
∂θ′

− ∂2�i (αi0, θ0)

∂θ∂θ′
− vθi

∂αi
∂θ′

−
(
∂αi
∂θ′

)′
(vθi )

′ −
(
∂αi
∂θ′

)′
vαi
∂αi
∂θ′

− ∂2

∂θ∂θ′

∣∣∣∣∣
θ0

(
αi(θ)

′vi
)}

=
1

N

N∑
i=1

ι̃(k̂i)
∂2�i

(
α̂(k̂i)

)
∂θ∂θ′

+ ι̃(k̂i)v
θ
i

(
α̂(k̂i)

) ∂α̂(k̂i)
∂θ′

− ∂2�i (αi0, θ0)

∂θ∂θ′
− vθi

∂αi
∂θ′

+ op(1),

where we have used that Eηi0 (vi) = 0, and that ∂αi

∂θ′ =
[
Eηi0 (−vαi )

]−1 Eηi0
(
vθi
)′
. Hence, using (E8)

and (E9):

D =
1

N

N∑
i=1

ι̃(k̂i)v
θ
i

(
∂α̂(k̂i, θ0)

∂θ′
− ∂αi(θ0)

∂θ′

)
+ op (1) ,

so:

D =
1

N

N∑
i=1

ι̃(k̂i)Eηi0
(
vθi

)(∂α̂(k̂i, θ0)
∂θ′

− ∂αi(θ0)

∂θ′

)
+ op (1) .
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Next, defining z(η)′ = Eηi0=η
(
vθi
) [
Eηi0=η (−vαi )

]−1
and z̃(k) as in the proof of Theorem 1 we have:

D =
1

N

N∑
i=1

ι̃(k̂i)z(ηi0)
′Eηi0 (−vαi )

(
∂α̂(k̂i)

∂θ′
− ∂αi
∂θ′

)
+ op (1)

=
1

N

N∑
i=1

ι̃(k̂i)z(ηi0)
′ (−vαi )

(
∂α̂(k̂i)

∂θ′
− ∂αi
∂θ′

)
+ op (1)

=
1

N

N∑
i=1

ι̃(k̂i)z(ηi0)
′
(
−vαi

(
α̂(k̂i)

))(∂α̂(k̂i)
∂θ′

− ∂αi
∂θ′

)
+ op (1)

=
1

N

N∑
i=1

ι̃(k̂i)z̃(k̂i)
′
(
−vαi

(
α̂(k̂i)

))(∂α̂(k̂i)
∂θ′

− ∂αi
∂θ′

)
+ op (1)

=
1

N

N∑
i=1

ι̃(k̂i)z̃(k̂i)
′
((

vθi

(
α̂(k̂i)

))′ − (−vαi (α̂(k̂i))) ∂αi∂θ′

)
+ op (1)

=
1

N

N∑
i=1

ι̃(k̂i)z̃(k̂i)
′

⎛⎜⎜⎝(Eηi0 (vθi ))′ − (Eηi0 (−vαi )) ∂αi∂θ′︸ ︷︷ ︸
=0

⎞⎟⎟⎠+ op (1) = op (1) ,

where we have used (E8) in the third equality, (A33) and the expression of ∂α̂(k)/∂θ′ in the fifth one,

and we have expanded around αi0 and used (E8) in the last equality.

Finally, to show (E2), let us define, analogously to the beginning of the proof of (A3):

ι̂i = 1
{
‖α̂(k̂i, θ̂)− αi0‖ ≤ ε

}
,

where ε is such that: infθ,η=(α′,μ′)′ inf‖(α̃,˜θ)−(α,θ)‖≤2ε
Eηi0=η

(
−vαi (α̃, θ̃)

)
≥ Σ. Using that θ̂ is consistent

it is easy to verify that:∣∣∣∣∣ 1N
N∑
i=1

�i

(
α̂(k̂i, θ̂), θ̂

)
− 1

N

N∑
i=1

�i

(
α̂i(θ̂), θ̂

)∣∣∣∣∣ ≤
∣∣∣∣∣ 1N

N∑
i=1

�i

(
a(k̂i, θ̂), θ̂

)
− 1

N

N∑
i=1

�i

(
α̂i(θ̂), θ̂

)∣∣∣∣∣ = Op(δ).

(E11)

Using similar arguments as at the beginning of the proof of (A3), but now at θ̂, we obtain that:

1

N

N∑
i=1

(1− ι̂i) = Op(δ),
1

N

N∑
i=1

ι̂i

∥∥∥α̂(k̂i, θ̂)− α̂i(θ̂)
∥∥∥2 = Op(δ),

hence that:

1

N

N∑
i=1

∥∥∥α̂(k̂i, θ̂)− α̂i(θ̂)
∥∥∥2 = Op(δ).

(E2) then comes from the fact that 1
N

∑N
i=1 ‖α̂i(θ̂)− αi0‖2 = Op(δ).

This ends the proof of Corollary E1.
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E.2 Analytical expression of the asymptotic bias

The next result provides an explicit characterization of the Op(1/T ) bias in (9), in cases where K

grows relatively fast relative to T . We recall that here p is fixed.

Corollary E2. Suppose that the conditions of Theorem 1 are satisfied. Let α̂i(θ) = argmaxαi
�i(αi, θ),

and let ĝi(θ) =
∂2	i(α̂i(θ),θ)
∂θ∂α′ (∂

2	i(α̂i(θ),θ)
∂α∂α′ )−1. Suppose in addition:

(i) There is an υ > 0 such that T Bξ(K
1−υ) p→ 0 as N,T,K tend to infinity. Moreover, for any

diverging KN,T sequence, T Bε(KN,T )
p→ 0 as N,T tend to infinity.

(ii) �i is four times differentiable, and its fourth derivatives satisfy similar uniform boundedness

properties as the first three.

(iii) γ(h) = Ehi=h[α̂i(θ0)] and λ(h) = Ehi=h[ĝi(θ0)] are differentiable with respect to h, uniformly

bounded with uniformly bounded first derivatives. Moreover, uniformly in h, Ehi=h[‖α̂i(θ0) −
γ(hi)‖2] = O(T−1), Ehi=h[‖ĝi(θ0)− λ(hi)‖2] = O(T−1), Ehi=h[‖α̂i(θ0)− γ(hi)‖3] = o(T−1), and

Ehi=h[‖ĝi(θ0)− λ(hi)‖3] = o(T−1).

Then, for p fixed as N,T,K tend to infinity such that K/N tends to zero we have:

θ̂ = θ0 +H−1 1

N

N∑
i=1

si +
C

T
+ op

(
1

T

)
+ op

(
1√
NT

)
, (E12)

where the expression of the constant C is given by (E24)-(E25) in the proof.

Under the conditions of Corollary E2, the kmeans objective is:

1

N

N∑
i=1

‖hi − ĥ(k̂i)‖2 = op

(
1

T

)
. (E13)

This happens when K grows sufficiently fast relative to T . As an example, when ξi0 scalar and

Bξ(K) = Op(K
−2), the condition requires TK−2 to tend to zero. The condition on Bε is satisfied

when εi is normal with zero mean and variance Σ/T for some Σ > 0, for example.

Corollary E2 shows that, when K is sufficiently large so that the approximation error Bξ(K) is

small relative to 1/T , and when in addition K/N tends to zero, the GFE estimator of θ0 satisfies an

expansion similar to that of the fixed-effects estimator, with a different first-order bias term; see, e.g.,

Hahn and Newey (2004, p.1302) for an expression of the bias of fixed-effects.

Proof of Corollary E2. We first show (E13). Let {ki} = {ki1} ∩ {ki2} be the intersection of

two partitions of {1, ..., N}: a first partition with (the integer part of) K1 = K1−υ groups, and a
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second partition with (the integer part of) K2 = Kυ groups. Since (ĥ, {k̂i}) solves (2), we have, using
Condition (i) in the corollary:

1

N

N∑
i=1

∥∥∥hi − ĥ(k̂i)
∥∥∥2 = 1

N

N∑
i=1

∥∥∥ϕ(ξi0) + εi − ĥ(k̂i)
∥∥∥2

≤ min
(˜h1,˜h2,{ki1},{ki2})

1

N

N∑
i=1

∥∥∥ϕ(ξi0)− h̃1(ki1) + εi − h̃2(ki2)
∥∥∥2

= Op (Bξ(K1)) +Op (Bε (K2)) = op

(
1

T

)
.

To show that (E12) holds, we will follow a likelihood approach as in Arellano and Hahn (2007,

2016). Consider the difference between the GFE and fixed-effects concentrated likelihoods:

ΔL(θ) =
1

N

N∑
i=1

�i(α̂(k̂i, θ), θ)− 1

N

N∑
i=1

�i(α̂i(θ), θ).

We are going to derive an expansion for the derivative of ΔL(θ) at θ0. From there, we will characterize

the first-order bias of the GFE estimator θ̂.

Specifically, we are going to show that:

∂

∂θ

∣∣∣
θ0
ΔL(θ) = − ∂

∂θ

∣∣∣
θ0

1

2N

N∑
i=1

νi(θ)
′Eηi0 [−vαi (αi(θ), θ)] νi(θ) + op

(
1

T

)
, (E14)

where νi(θ) = α̂i(θ) − Ehi (α̂i(θ)), and we denote αi (θ) ≡ α(θ, ηi0). In this case also, we can define

ξi0 = ηi0.

To show (E14) we are first going to establish several preliminary results. Together with fourth-

order differentiability in Condition (ii) of the corollary, those will allow us to derive the required

expansions. In the following we will evaluate all functions at θ0, and omit θ0 for the notation. In

particular, α̂i will be a shorthand for α̂i(θ0).

First, note that, from the proof of Theorem 1, and using (E13), we have:

1

N

N∑
i=1

‖α̂(k̂i)− α̂i‖2 = Op

(
1

T

)
. (E15)

Next, let α̂i = γ(hi) + νi, where γ(h) = Ehi=h (α̂i). We have:

α̂(k) =

(
N∑
i=1

1{k̂i = k}(−vαi (ai(k)))
)−1( N∑

i=1

1{k̂i = k}(−vαi (ai(k)))α̂i
)
, (E16)

for some ai(k) between α̂i and α̂(k). Note that, by the conditions of Theorem 1, (−vαi (α)) is uniformly

bounded away from zero with probability approaching one. Let γ̂(k) and ν̂(k) denote the weighted
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means of γ(hi) and νi in group k̂i = k, respectively, where the weight is (−vαi (ai(k))). Note that

α̂(k) = γ̂(k) + ν̂(k). By (E13), and since γ is Lipschitz-continuous, we have:

1

N

N∑
i=1

‖γ(hi)− γ̂(k̂i)‖2 = op

(
1

T

)
. (E17)

Moreover, since by Condition (iii) in the corollary the
√
Tνi, which are mean independent of the

k̂i′ ’s and have zero mean, have bounded conditional variance, and denoting as ν(k) the unweighted

mean of νi in group k̂i = k, we have: 1
N

∑N
i=1 ‖ν(k̂i)‖2 = Op

(
K
NT

)
= op

(
1
T

)
, where we have used that

p is fixed and K/N tends to zero. Hence:

1

N

N∑
i=1

‖ν̂(k̂i)‖2 = op

(
1

T

)
. (E18)

Let ĝi = vθi (α̂i)(−vαi (α̂i))−1 = λ(hi) + τ i, where λ(h) = Ehi=h (ĝi). Similarly to (E18), we have,

using analogous notations for weighted group means:

1

N

N∑
i=1

‖λ(hi)− λ̂(k̂i)‖2 = op

(
1

T

)
,

1

N

N∑
i=1

‖τ̂(k̂i)‖2 = op

(
1

T

)
. (E19)

Further, denote as γ̃(k), ν̃(k), λ̃(k), and τ̃(k) the weighted means of γ(hi), νi, λ(hi), and τ i in

group k̂i = k, respectively, where the weight is (−vαi (α̂i)). Using similar arguments we obtain:

1

N

N∑
i=1

‖γ(hi)− γ̃(k̂i)‖2 = op

(
1

T

)
,

1

N

N∑
i=1

‖ν̃(k̂i)‖2 = op

(
1

T

)
, (E20)

1

N

N∑
i=1

‖λ(hi)− λ̃(k̂i)‖2 = op

(
1

T

)
,

1

N

N∑
i=1

‖τ̃(k̂i)‖2 = op

(
1

T

)
. (E21)

Next, using (E16), (E17), and (E18), in addition to the parameter space for αi0 being compact

and γ being bounded, we have that: 1
N

∑N
i=1 ‖α̂(k̂i) − α̂i‖3 = − 1

N

∑N
i=1 ‖νi‖3 + op(1/T ). Hence, by

Condition (iii) in the corollary:

1

N

N∑
i=1

‖α̂(k̂i)− α̂i‖3 = op

(
1

T

)
. (E22)
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To see that (E14) holds, first note that, denoting a⊗2 = a⊗ a:

∂

∂θ

∣∣∣
θ0
ΔL(θ) =

1

N

N∑
i=1

∂�i(α̂(k̂i))

∂θ
− 1

N

N∑
i=1

∂�i(α̂i)

∂θ

=
1

N

N∑
i=1

vθi (α̂i)
(
α̂(k̂i)− α̂i

)
+

1

2N

N∑
i=1

vθαi (ai)
(
α̂(k̂i)− α̂i

)⊗2

=
1

N

N∑
i=1

vθi (α̂i)
(
α̃(k̂i)− α̂i

)
︸ ︷︷ ︸

≡A1

+
1

2N

N∑
i=1

vθαi (ai)
(
α̂(k̂i)− α̂i

)⊗2

︸ ︷︷ ︸
≡A2

+
1

2N

N∑
i=1

vθi (α̂i)

(
N∑
i′=1

1{k̂i′ = k̂i}(−vαi′(α̂i′))
)−1 N∑

i′=1

1{k̂i′ = k̂i}vααi′
(
ai′(k̂i′)

)(
α̂(k̂i′)− α̂i′

)⊗2

︸ ︷︷ ︸
≡A3

,

where ai lies between α̂i and α̂(k̂i) and so does ai(k̂i), v
θα
i (ai) is a matrix of third derivatives with

(dimαi0)
2 columns, and we have defined, for all k:

α̃(k) =

(
N∑
i=1

1{k̂i = k}(−vαi (α̂i))
)−1 N∑

i=1

1{k̂i = k}(−vαi (α̂i))α̂i, (E23)

where we note that (−vαi (α̂i)) is uniformly bounded away from zero with probability approaching one.

Let us consider the three terms in turn. First, we have:

A1 =
1

N

N∑
i=1

ĝi (−vαi (α̂i))
(
α̃(k̂i)− α̂i

)
=

1

N

N∑
i=1

(
ĝi − g̃(k̂i)

)
(−vαi (α̂i))

(
α̃(k̂i)− α̂i

)
= − 1

N

N∑
i=1

(
λ(hi)− λ̃(k̂i) + τ i − τ̃(k̂i)

)
(−vαi (α̂i))

(
γ(hi)− γ̃(k̂i) + νi − ν̃(k̂i)

)
= − 1

N

N∑
i=1

τ i(−vαi (α̂i))νi + op

(
1

T

)

= − 1

N

N∑
i=1

τ iEηi0(−vαi (αi0))νi + op

(
1

T

)
,

where we have used (E16), (E20), and (E21).
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Next, we have, using in addition (E22):

A2 =
1

2N

N∑
i=1

Eηi0
(
vθαi (αi0)

)(
α̂(k̂i)− α̂i

)⊗2
+ op

(
1

T

)

=
1

2N

N∑
i=1

Eηi0
(
vθαi (αi0)

)(
γ̂(k̂i)− γ(hi) + ν̂(k̂i)− νi

)⊗2
+ op

(
1

T

)

=
1

2N

N∑
i=1

Eηi0
(
vθαi (αi0)

)
ν⊗2
i + op

(
1

T

)
.

Lastly, defining g̃(k) the weighted mean of ĝi in group k̂i = k with weight (−vαi (α̂i)), we have:

A3 =
1

2N

N∑
i=1

ĝi(−vαi (α̂i))
(
N∑
i′=1

1{k̂i′ = k̂i}(−vαi′(α̂i′))
)−1

×
N∑
i′=1

1{k̂i′ = k̂i}vααi′
(
ai′(k̂i′)

)(
α̂(k̂i′)− α̂i′

)⊗2

=
1

2N

N∑
i=1

g̃(k̂i)(−vαi (α̂i))
(
N∑
i′=1

1{k̂i′ = k̂i}(−vαi′(α̂i′))
)−1

×
N∑
i′=1

1{k̂i′ = k̂i}vααi′
(
ai′(k̂i′)

)(
α̂(k̂i′)− α̂i′

)⊗2
+ op

(
1

T

)

=
1

2N

N∑
i=1

g̃(k̂i)v
αα
i

(
ai(k̂i)

)(
α̂(k̂i)− α̂i

)⊗2
+ op

(
1

T

)

=
1

2N

N∑
i=1

Eηi0
(
vθi (αi0)

) [
Eηi0(−vαi (αi0))

]−1 Eηi0 [v
αα
i (αi0)] ν

⊗2
i + op

(
1

T

)
.

Combining results, we get:

∂

∂θ

∣∣∣
θ0
ΔL(θ) = − 1

N

N∑
i=1

τ iEηi0(−vαi (αi0))νi

+
1

2N

N∑
i=1

[
Eηi0

(
vθαi (αi0)

)
+ Eηi0

(
vθi (αi0)

) [
Eηi0(−vαi (αi0))

]−1 Eηi0 [v
αα
i (αi0)]

]
ν⊗2
i + op

(
1

T

)
.

This shows (E14), since ∂α̂i(θ0)
∂θ′ = ĝ′i, and:

∂

∂θ′
∣∣∣
θ0

vecEηi0 [−vαi (αi(θ), θ)] = −
(
Eηi0

(
vθαi (αi0)

)
+ Eηi0

(
vθi (αi0)

) [
Eηi0(−vαi (αi0))

]−1 Eηi0 [v
αα
i (αi0)]

)′
.

Equation (E14) readily delivers an expression for the first-order bias term of the GFE estimator.
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Indeed, using that (e.g., Arellano and Hahn, 2007):

∂

∂θ

∣∣∣
θ0

1

N

N∑
i=1

�i(αi(θ), θ)− 1

N

N∑
i=1

�i(α̂i(θ), θ)

= − ∂

∂θ

∣∣∣
θ0

1

2N

N∑
i=1

vi (αi(θ), θ)
′ Eηi0 [−vαi (αi(θ), θ)]−1 vi (αi(θ), θ) + op

(
1

T

)
,

it follows that Corollary E2 holds, with:

C = H−1 plim
N,T→∞

1

N

N∑
i=1

∂

∂θ

∣∣∣∣
θ0

T bi(θ), (E24)

for:

bi(θ) = −1

2
(α̂i(θ)− Ehi (α̂i(θ)))′ Eηi0 [−vαi (αi(θ), θ)] (α̂i(θ)− Ehi (α̂i(θ)))

+
1

2
vi (αi(θ), θ)

′ Eηi0 [−vαi (αi(θ), θ)]−1 vi (αi(θ), θ) . (E25)

Bias in a regression example. Consider the following model for a scalar outcome:

Yit = ρ0Yi,t−1 +X ′
itβ0 + αi0 + Uit, (E26)

where |ρ0| < 1. In this case, α̂i(θ) = (1− ρ)Y i−X ′
iβ+ op

(
T− 1

2

)
. Hence, when classifying individuals

based on hi =
(
Y i, X

′
i

)′
, α̂i(θ) belongs to the span of hi, up to small-order terms. It follows that C/T

is identical to the first-order bias CFE/T of the fixed-effects estimator, and fixed-effects and two-step

GFE are first-order equivalent.

However, this equivalence does not hold generally. As an example, let us suppose the unobservables

(αi0, μ
′
i0)

′ follow a one-factor structure with μi0 = λαi0 for a vector λ, and let us classify individual

units based on hi = Y i only. Injectivity is satisfied in this example, due to the low underlying

dimensionality of ηi0 = (αi0, μ
′
i0)

′. In this case it can be verified that:

Ehi (α̂i(θ)) =

⎛⎜⎝ 1−ρ
1−ρ0 +

(
1−ρ
1−ρ0β0 − β

)′
λ

1
1−ρ0 +

β′0λ
1−ρ0

⎞⎟⎠Y i + op

(
1√
T

)
,

and, letting Vit = Xit − λαi0:

νi(θ) = β′
λU i − V i
1 + β′0λ

+ op

(
1√
T

)
.

As a result, the first-order bias term on ρ0 is the same for GFE and fixed-effects, while for β0 we have,

letting 1
T

∑T
t=1 E(VitV

′
it) = Σ > 0:

C = CFE − Σ−1E
[
T
(
λU i − V i

) (
λU i − V i

)′] β0(
1 + β′0λ

)2 ,
so C �= CFE in general.
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F Verification of assumptions in linear models

In this section we verify the assumptions of Theorem 1 in the linear model:{
Yit = ρ0Yi,t−1 +X ′

itβ0 + αit0 + Uit,

Xit = μit0 + Vit,
(F1)

where Yit is a scalar outcome andXit is a vector of strictly exogenous covariates. We consider two cases:

time-invariant αi0, μi0, and time-varying αit0, μit0. Throughout, we use the notation Zi = (Z ′
i1, ..., Z

′
iT )

′

and Zi =
1
T

∑T
t=1 Zit.

F.1 Time-invariant heterogeneity

Assumption F1. (regularity in linear model, time-invariant heterogeneity)

(i) The parameter space Θ for θ0 = (ρ0, β
′
0)

′, and the space for (αi0, μ
′
i0), are compact.

θ0 belongs to the interior of Θ, and |ρ0| < 1.

(ii) Uit ∼ N (0, σ20), i.i.d. across individuals and over time, independent of Xi, αi0, μi0 and Yi0.

Vit ∼ N (0,Σ2
0), i.i.d. across individuals and over time, independent of Xi, αi0, μi0, Ui, and Yi0.

Yi0 is drawn from its stationary distribution conditional on αi0 and μi0.

(iii) Let Wit = (Yi,t−1, X
′
it)

′. E(
(
Wit − Eαi0,μi0

(Wit)
) (
Wit − Eαi0,μi0

(Wit)
)′
) is positive definite.

(iv) T tends to infinity, and GFE is based on the moment hi = (Y i, X
′
i)
′.

In Assumption F1 we suppose that Uit and Vit are normal homoskedastic. This can be relaxed,

and we could work instead under stationary mixing conditions as in Hahn and Kuersteiner (2011). In

that case the likelihood function would be interpreted as a pseudo-likelihood, and the formula for the

asymptotic distribution should be adapted.

We are now going to verify the assumptions of Theorem 1, part (b). Assumption 1 holds let-

ting ξi0 = (αi0, μ
′
i0)

′, which has compact support. Note that in this model with time-invariant

heterogeneity we can abstract from λt0 without loss of generality. Next, ϕ(ξi0) = (
αi0+μ

′
i0β0

1−ρ0 , μ′i0)
′,

and it is easy to check that ϕ is Lipschitz-continuous. Moreover, by part (ii) in Assumption F1 we

have 1
N

∑N
i=1 ‖hi − ϕ(ξi0)‖2 = Op(1/T ). Lastly, letting ψ(h1, h2) = ((1− ρ0)h1 − h′2β0, h′2)

′, we have

(αi0, μ
′
i0)

′ = ψ(ϕ(ξi0)). ψ is Lipschitz-continuous by part (i) in Assumption F1. We have thus verified

Assumptions 1 and 2, and the conditions of Lemmas 1 and 2.

Let us now verify Assumption 3, with part (iib). In the present case, p = 1 and R = T . We

consider the log-likelihood function:

�i(α, θ) = − 1

2T

T∑
t=1

(
Yit −W ′

itθ − α
)2
,
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where we have set σ20 = 1 without loss of generality. In addition, we have, for all ξ = (α, μ′)′:

α(θ, ξ) = Eξi0=ξ(Y i −W
′
iθ) =

1− ρ

1− ρ0
α+ μ′

(
1− ρ

1− ρ0
β0 − β

)
.

Note that α(θ0, ξi0) = αi0.

It is easy to see that Assumption 3 part (i) is satisfied. Next, by part (i) in Assumption F1 the

expected log-likelihood, and the expected log-likelihood derivatives, are bounded. Moreover, ∂
2	i(α,θ)
∂α2

=

−1, and the third derivatives of �i are zero. From the assumptions on Uit:

1

N

N∑
i=1

[�i(αi0, θ0)− Eξi0(�i(αi0, θ0))]2 =
1

N

N∑
i=1

(
1

T

T∑
t=1

U2
it − Eξi0(U2

it)

)2

= Op(1/T ).

For all first three derivatives of �i, we obtain similar Op(1/T ) rates by using the conditions on Uit, Vit

and heterogeneity. This verifies Assumption 3 part (iib).

Next, the expected “target” log-likelihood E [�i(α(θ, ξi0), θ)] is quadratic in θ, and its partial deriva-

tives with respect to ρ and β are, respectively:

E
((

Yi,t−1 − αi0 + μ′i0β0
1− ρ0

)(
Yit − αi0 + μ′i0β0

1− ρ0
− ρ

(
Yi,t−1 − αi0 + μ′i0β0

1− ρ0

)
− (Xit − μi0)

′β
))

,

and:

E
(
(Xit − μi0)

(
Yit − αi0 + μ′i0β0

1− ρ0
− ρ

(
Yi,t−1 − αi0 + μ′i0β0

1− ρ0

)
− (Xit − μi0)

′β
))

.

It is easy to verify that those are zero at θ0 = (ρ0, β
′
0)

′. Moreover, the second derivative −H is negative

definite by Assumption F1 (iii). Lastly, we have:

sup
θ

1

N

N∑
i=1

∥∥∥∥∂2�i(α(θ, ξi0), θ)∂θ∂α

∥∥∥∥2 = 1

N

N∑
i=1

‖W i‖2 = Op(1),

where we have used the assumptions on Uit, Vit, and the heterogeneity. This verifies Assumption 3

part (iii).

Turning to Assumption 3 part (iv), we have:

∂

∂ξ′

∣∣∣∣
ξ=˜ξ

Eξi0=ξ

(
∂2�i(α, θ0)

∂θ∂α

)
= − ∂

∂ξ′

∣∣∣∣
ξ=˜ξ

Eξi0=ξ
(
W i

)
= −

(
1

1−ρ0
β0

1−ρ0
0 I

)
,

where I is the identity matrix of size dimμi0. Similarly, we have:

∂

∂ξ′

∣∣∣∣
ξ=˜ξ

Eξi0=ξ

(
∂2�i(α, θ0)

∂α2

)
= 0,

and:

∂

∂ξ′

∣∣∣∣
ξ=˜ξ

Eξi0=ξ

(
∂�i(α(θ, ξ̃), θ)

∂α

)
=

∂

∂ξ′

∣∣∣∣
ξ=˜ξ

(
α(θ, ξ)− α(θ, ξ̃)

)
=

(
1− ρ

1− ρ0
,
1− ρ

1− ρ0
β′0 − β′

)
,
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which is bounded by Assumption F1 (i). This verifies Assumption 3 part (iv).

Lastly, turning to Assumption 3 part (v), we have:

Ehi=h,ξi0=ξ

(
∂�i(α(θ, ξ), θ)

∂α

)
= Eεi=h−ϕ(ξ),ξi0=ξ

(
Y i −W

′
iθ − α(θ, ξ)

)
.

It is easy to verify that, by Assumption F1 (ii), this is a linear function of h− ϕ(ξ) whose coefficients

are uniformly bounded.

Likewise:

Ehi=h,ξi0=ξ

(
vec

∂

∂θ

∣∣∣∣
θ0

∂�i(α(θ, ξ), θ)

∂α

)
is also linear in h− ϕ(ξ), with coefficients that are uniformly bounded.

Moreover:

Varhi=h,ξi0=ξ

(
∂�i(α(θ, ξ), θ)

∂α

)
= Varhi=h,ξi0=ξ

(
Y i −W

′
iθ
)

is non-stochastic by Assumption F1 (ii), and it can be shown that is satisfies:

Varhi=h,ξi0=ξ

(
Y i −W

′
iθ
)
= Op

(
1

T

)
,

uniformly in h, ξ, and θ.

Finally, we have:

Varhi=h,ξi0=ξ

(
vec

∂

∂θ

∣∣∣∣
θ0

∂�i(α(θ, ξ), θ)

∂α

)
= Varhi=h,ξi0=ξ

(
W i

)
.

Now, Varhi=h,ξi0=ξ
(
Xi
)
= 0. Moreover:

Varhi=h,ξi0=ξ
(
Y i,−1

)
= Op

(
1

T

)
,

uniformly in h and ξ, where Y i,−1 =
1
T

∑T
t=1 Yi,t−1.

This verifies Assumption 3 part (v).

Applying Theorem 1, we obtain:

θ̂ = θ0 +H−1 1

N

N∑
i=1

si +Op

(
1

T

)
+Op

(
K

− 2
dimXit+1

)
+ op

(
1√
NT

)
,

where H = E
((
Wit − Eξi0(Wit)

) (
Wit − Eξi0(Wit)

)′)
, and si =

1
T

∑T
t=1

(
Wit − Eξi0(Wit)

)
Uit.

F.2 Time-varying heterogeneity

We will verify the conditions in the time-varying case under the following assumptions, where for

simplicity we focus on a scalar covariate Xit. The two unobservables have a factor structure, with a

single factor in each equation.
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Assumption F2. (regularity in linear model, time-varying heterogeneity)

(i) αit0 = αi0λ
α
t0 and μit0 = μi0λ

μ
t0, where αi0, μi0, λ

α
t0, and λμt0 are scalar.

(ii) λαt0 and λμt0 are stationary with bounded supports and non-zero means, and are independent of Ui

and Vi. Moreover, ‖ 1
T

∑T
t=1 λ

α
t0−E(λαt0)‖2 = Op(1/T ), and ‖ 1

T

∑T
t=1 λ

μ
t0−E(λμt0)‖2 = Op(1/T ).

(iii) Assumption F1 holds, with part (iii) replaced by E(
(
Wit − Eαi0,μi0,λ0(Wit)

) (
Wit − Eαi0,μi0,λ0(Wit)

)′
)

being positive definite.

Assumption 1 holds by part (i) in Assumption F2. In addition, we have:

ϕ(ξi0) = plim
T→∞

1

T

T∑
t=1

⎛⎝ αi0λ
α
t0 + μi0λ

μ
t0β0 +

∑+∞
s=1 ρ

s
0

[
αi0λ

α
t−s,0 + μi0λ

μ
t−s,0β0

]
μi0λ

μ
t0

⎞⎠ ,

where, as in the time-invariant case, we define ξi0 = (αi0, μi0)
′. Hence, by stationarity of the factors:

ϕ(ξi0) =

(
αi0E[λαt0]+μi0E[λ

μ
t0]β0

1−ρ0
μi0E[λ

μ
t0]

)
.

It follows that ϕ is Lipschitz-continuous. Injectivity follows from E[λαt0] �= 0 and E[λμt0] �= 0.

Let ναt0 = λαt0 − E[λαt0], and νμt0 = λμt0 − E[λμt0]. We have:

hi − ϕ(ξi0) =
1

T

T∑
t=1

(
Uit + Vitβ0 +

∑+∞
s=1 ρ

s
0 [Ui,t−s + Vi,t−sβ0]

Vit

)

+
1

T

T∑
t=1

⎛⎝ αi0ν
α
t0 + μi0ν

μ
t0β0 +

∑+∞
s=1 ρ

s
0

[
αi0ν

α
t−s,0 + μi0ν

μ
t−s,0β0

]
μi0ν

μ
t0

⎞⎠ .

Using Assumption F1 and part (ii) in Assumption F2, we verify that 1
N

∑N
i=1 ‖hi−ϕ(ξi0)‖2 = Op(1/T ).

Let us now verify Assumption 3, with part (iib). In the present case, p = T and R = 1. We

consider the log-likelihood function:

�it(α, θ) = −1

2

(
Yit −W ′

itθ − α
)2
,

where we have again set σ20 = 1. We have, for all ξ = (α, μ)′ and t:

αt(θ, ξ) = Eξi0=ξ,λα0 ,λμ0 (Yit −W ′
itθ)

= αλαt0 + (β0 − β)μλμt0 + (ρ0 − ρ)α

∞∑
s=1

ρs−1
0 λαt−s,0 + (ρ0 − ρ)β0μ

∞∑
s=1

ρs−1
0 λμt−s,0.

Note that αt(θ0, ξi0) = αi0λ
α
t0 = αit0.

It is easy to see that Assumption 3 part (i) is satisfied. To check Assumption 3 part (iib), note

that the expected log-likelihood is uniformly bounded by Assumption F1 and part (ii) in Assumption
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F2, and similarly for its first three derivatives. As in the time-invariant case, ∂
2	it(α,θ)
∂α2

= −1, and the

third derivatives of �it are zero. Moreover:

1

NT

N∑
i=1

T∑
t=1

[�it(αit0, θ0)− Eξi0,λ0(�it(αit0, θ0))]2 =
1

NT

N∑
i=1

T∑
t=1

(
U2
it − Eαi0,μi0,λ

α
0 ,λ

μ
0
(U2
it)
)2

= Op(1),

and all the first three derivatives of �it are similarly Op(1). This verifies Assumption 3 part (iib).

Turning to part (iii), the function:

E

[
1

T

T∑
t=1

�it(α
t(θ, ξi0), θ)

]

is quadratic in θ, and its partial derivatives with respect to ρ and β are, respectively:

E

((
Yi,t−1 − αi0

+∞∑
s=1

ρs−1
0 λαt−s,0 − β0μi0

+∞∑
s=1

ρs−1
0 λμt−s,0

)(
Yit − ρYi,t−1 − βXit − αt(θ, ξi0)

))
,

and:

E
(
(Xit − μi0λ

μ
t0)
(
Yit − ρYi,t−1 − βXit − αt(θ, ξi0)

))
.

These are zero at θ0. Moreover, the second derivative −H is negative definite by Assumption F2 (iii).

Lastly, we have:

sup
θ

1

NT

N∑
i=1

T∑
t=1

∥∥∥∥∂2�it(αt(θ, ξi0), θ)∂θ∂α

∥∥∥∥2 = 1

NT

N∑
i=1

T∑
t=1

‖Wit‖2 = Op(1).

This verifies Assumption 3 part (iii).

Let us now check Assumption 3 part (iv). We have:

∂

∂ξ′

∣∣∣∣
ξ=˜ξ

Eξi0=ξ,λ0=λ

(
∂2�it(α, θ0)

∂θ∂α

)
= − ∂

∂ξ′

∣∣∣∣
ξ=˜ξ

Eξi0=ξ,λ0=λ (Wit)

= −
( ∑∞

s=1 ρ
s−1
0 λαt−s β0

∑∞
s=1 ρ

s−1
0 λμt−s

0 λμt

)
,

which is uniformly bounded using Assumption F1 and part (ii) in Assumption F2. The second condi-

tion in Assumption 3 part (iv) is immediate to verify. Lastly, we have:

∂

∂ξ′

∣∣∣∣
ξ=˜ξ

Eξi0=ξ,λ0=λ

(
∂�it(α

t(θ, ξ̃), θ)

∂α

)
=

∂

∂ξ′

∣∣∣∣
ξ=˜ξ

(
αt(θ, ξ)− αt(θ, ξ̃)

)
=

(
λαt + (ρ0 − ρ)

+∞∑
s=1

ρs−1
0 λαt−s , (β0 − β)λμt + (ρ0 − ρ)β0

+∞∑
s=1

ρs−1
0 λμt−s

)

which is also uniformly bounded. This verifies Assumption 3 part (iv).
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Finally, let us verify Assumption 3 part (v). We have:

Ehi=h,ξi0=ξ,λ0=λ

(
∂�it(α

t(θ, ξi0), θ)

∂α

)
= Eεi=h−ϕ(ξ),ξi0=ξ,λ0=λ

(
Yit −Witθ − αt(θ, ξi0)

)
.

This is a linear function of h− ϕ(ξ) whose coefficients are uniformly bounded.

Likewise:

Ehi=h,ξi0=ξ,λ0=λ

(
∂

∂θ

∣∣∣∣
θ0

∂�it(α
t(θ, ξi0), θ)

∂α

)
is also linear in h− ϕ(ξ), with coefficients that are uniformly bounded.

Moreover:

Varhi=h,ξi0=ξ,λ0=λ

(
∂�it(α

t(θ, ξi0), θ)

∂α

)
= Varhi=h,ξi0=ξ,λ0=λ

(
Yit −W ′

itθ
)

is non-stochastic by Assumption F1 (ii), and it is easy to see that it is bounded uniformly in h, ξ, λ,

t, and θ.

Similarly:

Varhi=h,ξi0=ξ,λ0=λ

(
∂

∂θ

∣∣∣∣
θ0

∂�it(α
t(θ, ξ), θ)

∂α

)
= Varhi=h,ξi0=ξ,λ0=λ (Wit)

is uniformly bounded.

This verifies Assumption 3 part (v).

Applying Theorem 1, we obtain:

θ̂ = θ0 + H̃−1 1

N

N∑
i=1

s̃i +Op

(
1

T

)
+Op

(
K

N

)
+Op

(
K

− 2
dimXit+1

)
+ op

(
1√
NT

)
,

where H̃ = E
((
Wit − Eξi0,λ0(Wit)

) (
Wit − Eξi0,λ0(Wit)

)′)
, and s̃i =

1
T

∑T
t=1

(
Wit − Eξi0,λ0(Wit)

)
Uit.

G Additional simulation results for the probit models

In this section we present additional results on the simulations of probit models. We start by describing

the DGP in detail. We then show results about inference and estimation of K. Finally, we present

two exercises related to computational aspects of GFE.

G.1 Monte Carlo designs and estimators

We consider the following static probit model:{
Yit = 1 {X ′

itθit0 + αit0 + Uit > 0} ,
Xit = μit0 + Vit,

(G1)
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where Uit are i.i.d. standard normal, independent of Xi, αi0, μi0, and Vit are i.i.d. normal with zero

mean and identity covariance matrix, independent of all Uit’s, Xi, αi0, and μi0.

We consider three different specifications for θit0, αit0, and μit0. In the fixed-effects probit specifi-

cation, all components of θit0 are constant, equal to 1, and μit0 = μi0 are normal with zero mean and

identity covariance matrix. In DGP 2 to 4, we set αi0 = 1√
r

∑r
r′=1 μ

(r′)
i0 + ζi, where ζi are standard

normal independent of μi0, and μ
(r′)
i0 , r′ = 1, ..., r, denote the components of μi0. In DGP 1 we set

αi0 = μi0.

In the time-varying specification, all components of θit0 are constant, equal to 1, αit0 = αi0ft and

μit0 = μi0ft, where αi0 and μi0 are as in the fixed-effects specification, and ft = −t is a time trend.

Note that, given the one-dimensional factor structure, the underlying dimension of αit0 is still one in

this case.

Finally, in the random coefficients specification, αit0 and μit0 are modeled as for fixed-effects probit.

In addition, the first component of θit0 is constant, equal to 1, and all other components are identical,

equal to θ
(r′)
it0 = θ

(r′)
i0 = 1 + αi0

2 . While the number of heterogeneous parameters is increasing relative

to the fixed-effects specification, the underlying dimension of (αit0, θ
′
it0) is equal to one.

We estimate the fixed-effects probit specification using GFE methods based on the moment vectors

hi = (Y i, X
′
i)
′, running a probit on group indicators in the second step. When estimating the time-

varying specification we take hi = (Y i, X
′
i)
′ as moments, and interact the group indicators with time

dummies in the second step. Lastly, we estimate the random coefficients specification using GFE

based on hi = (Y i, X
′
i, Y X

′
i)
′, where in the second step we interact the group indicators with all

covariates except the first one. We will compare GFE with fixed-effects estimators in two of the three

specifications: fixed-effects probit and random coefficients. However, fixed-effects is not feasible in

the time-varying specification. For every specification, we will vary the dimension of heterogeneity by

varying the number of covariates.

In all simulations we take N = 1000 and T = 20, and report estimates of the first component of θit0,

which is always constant and equal to 1 irrespective of the design. We perform 500 simulations, and

estimate kmeans using the matlab implementation, which augments Lloyd’s updates with a local search

rountine, using 100 randomly generated starting values. For iterated GFE, we start the iteration at

the two-step estimate and iterate 10 times. To implement conditional kmeans we initialize Algorithm

2 at two-step estimates. In the cubic specification we include all linear, quadratic, and cubic powers

of the elements of Xit, as well as a set of interactions, for (dimXit + 1)2 coefficients in total. In the

neural network specification we use a single hidden layer feedforward model with three nodes, with a

sigmoid input link and a linear output link. We train the neural network using matlab’s “trainscg”.

Note that, in this case the algorithm is not guaranteed to decrease the objective function in each step.

We stop the algorithm after 10 iterations.
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G.2 Inference

In Table S1 we report the analytical coverage for two-step GFE, iterated GFE, and fixed-effects, both

uncorrected and using half-panel jackknife bias correction. To compute confidence intervals we use two

methods: an analytical method based on Ĥ in (17), and a method based on the bootstrap clustered

at the individual level.

Consider first the fixed-effects probit model in Panel A. The results show that coverage accuracy for

two-step GFE strongly depends on the dimension of heterogeneity. In DGP 1, where the dimension is

one, both analytical and bootstrap methods give close to nominal coverage when using bias correction.

This is true both when K = 10 and when we estimate K using our rule (DGP 1∗). This finding is

in line with Corollary 4. However, in the other DGP the dimension of heterogeneity is larger and

two-step GFE is substantially biased, as shown by Table 1. As a result, coverage probabilities are

heavily distorted. The intermediate case of DGP 2 is interesting, since under-coverage is somewhat less

severe when using our rule to estimate K, especially when using the bootstrap to construct confidence

intervals.

In contrast, the iterated GFE estimator, while showing some coverage distortions as the dimension

of X grows (even after bias correction), outperforms two-step GFE, and in fact it tends to outper-

form bias-corrected fixed-effects in terms of coverage when using the bootstrap. According to our

simulations, bootstrap inference is more reliable than inference based on the analytical method. It is

interesting to see that bootstrap inference based on iterated GFE with bias correction has relatively

small finite sample distortions, even in DGP 3 and 4 where the dimension of heterogeneity is such

that Corollary 4 does not apply.

Consider next the model with time-varying unobservables in Panel B of Table S1. In DGP 1,

bias-corrected two-step GFE tends to undercover. Note that in this case the conditions of Corollary 4

are not met, since there are p = T time-varying parameters, and the DGP features a non-stationary

time trend. In DGP 2 to 4 the dimension of heterogeneity is larger, and biases are higher, so the two-

step method undercovers heavily. An exception is DGP 2 when we estimate K (DGP 2∗), in which

case bias-reduced two-step GFE is not substantially biased, and the bootstrap coverage probability is

good. In the various DGP, iterated GFE gives less distorted coverage probabilities. Indeed, while the

analytical inference method undercovers, bias-reduced iterated GFE tends to be conservative when

based on the bootstrap. Lastly, in this time-varying specification, fixed-effects is no longer consistent,

hence we do not report inference in this case.

Finally, consider the random coefficients probit model in Panel C. In both DGP 3 and 4, where the

dimension of heterogeneity is relatively large, coverage based on two-step GFE is heavily distorted.

In such DGP, Corollary 4 is not applicable, since (16) is not met. In contrast, although iterated

GFE undercovers substantially when using analytical confidence intervals, the bootstrap provides

more accurate coverage. Note that for DGP 4 the bias-corrected fixed-effects estimator undercovers
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less than in DGP 3, but in both cases the estimator is substantially biased and the higher coverage

probability in DGP 4 only comes from the very large standard deviation of the estimator (see Table

2 in the main text).

G.3 Additional results with estimated K

We next present results on the performance of two-step estimators when we estimate K. When the

dimension of heterogeneity is small, such as in DGP 1 and 2, we use (4) with γ = 1 to set K. We

have used this method in DGP 1∗ and 2∗ in Tables 1, 2, and S1. In DGP with a larger dimension of

heterogeneity, such as DGP 3 and 4, conditional methods perform substantially better than two-step

GFE, and we use a different rule based on a conditional first step to set K, as described in Appendix

B.2. Both rules are based on the first step alone.

In Table S2 we show the results for DGP 1 and 2, using the unconditional rule (4). The results

illustrate how the choice of K adapts to the dimension of heterogeneity. A larger dimension d increases

approximation error, hence leads to a larger value of K. We also report the estimated K in half-panels,

since we compute them as part of the bias correction strategy. In half-panels the estimates of K

decrease, since the noise level increases. Notice that, in the time-varying specification, K estimates

differ for the two half-panels. This is probably due to the lack of stationarity of the DGP in this case.

We commented on mean estimates when discussing the results of Tables 1 and 2 in the main text. In

addition, standard deviations do not seem to increase when estimating K.

We turn now to the performance of GFE methods when the choice of K is based on a conditional

first step, as described in Appendix B.2. We first compute the kmeans estimator with Kmax = 30.

We use this unconditional classification to initialize a linear conditional kmeans algorithm that uses

first-order polynomials as a basis, also with Kmax = 30. In the case of the time-varying probit model,

we add a linear trend to the set of covariates. This step provides the value of the noise level. We

then estimate the conditional kmeans estimator, and we compare the noise level to the value of the

objective, for different values of K. The selected K is then the smallest value such that the noise level

is larger than the conditional kmeans objective. This choice of K balances the time-series noise versus

the approximation error solely due to αi0.

We show the results in Tables S3 and S4. Notice that the estimated K is now lower than when

using our unconditional rule (see Table S2). As an example, in the fixed-effects probit model in DGP

2, K is around 6 in the conditional case, whereas K is around 20 in the unconditional case. In addition,

the estimated K values remain stable when the number of covariates increases. In fact, we see a mild

decrease in K, which might be due to the nonparametric approximation to the conditional expectation

of Y given X: since we keep the number of terms in the series fixed, the nonparametric error increases

with the number of covariates, hence driving the noise level up and giving a lower K value.

Tables S3 and S4 show that the performance of GFE methods is quite similar to the case with
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K = 10. The case of DGP 2 in Table S3 is interesting, since when using the conditional rule to set

K two-step GFE is severely biased in this case. This is due to the fact that the estimated number of

groups (K ≈ 5− 6) is small relative to the one given by our unconditional rule in Table S2 (K ≈ 20).

Indeed, the conditional rule targets a uni-dimensional approximation error in this case, but the bias

of two-step GFE is affected by a bi-dimensional approximation error. In contrast, we see that GFE

methods with a conditional first step – for which the conditional rule is designed – tend to perform

very well.

G.4 Computational aspects

Finding the global optimum in kmeans is challenging, and most available algorithms only provide

approximate solutions. In Table S5 we study the impact of using different numbers of random starting

values in the kmeans heuristic on the statistical performance of GFE estimators. We focus on a fixed-

effects probit specification with N = 1000 and T = 20, and use K = 10 groups. Let n be a number of

starting values. In each of the 500 simulated samples, we compute 100 kmeans partitions starting at

n randomly generated values, and the resulting two-step GFE estimators. We then report the total

variance across samples and kmeans runs, as well as the between-sample and within-sample variances.

The share of within to total variance measures the contribution of numerical error to overall variability

of the estimator.

Unsurprisingly, as the number of starting values increases, the share of variance due to numerical

error decreases. Interestingly, it is quite small as soon as we use more than 100 starting values.

With 100 values, the numerical variability of kmeans increases the variance of two-step GFE by 1.9%

in DGP 2, and by 12.3% in DGP 4. With 1000 starting values, the increase is 0.3% and 7.5%.,

respectively. Although increasing the number of starting values adds to the overall computational

burden, off-the-shelf parallelization is available in various kmeans routines.

Finally, in Table S6 we compare the computational cost of fixed-effects, two-step GFE, and iter-

ated GFE estimators, for different cross-sectional sizes, from N = 100 to N = 10000, in a random

coefficients probit model with three covariates (DGP 3). We separately record the time used by the

kmeans algorithm in the total computation of GFE. We use 100 starting values to compute the kmeans

partition in the first step. When the sample size is small, fixed-effects is faster than GFE, due to the

overhead cost of starting the computation in kmeans. However, as N increases to moderate sizes,

such as N = 1000, GFE becomes faster than fixed-effects. The reason is that kmeans computation

only increases moderately with the sample size, and second-step computation involves much fewer

parameters to estimate than fixed-effects. Iterating adds some computational cost, and fixed-effects

is faster than iterated GFE (where we iterate 10 times) up to N = 1000. However, for N = 5000 and

N = 10000, iterated GFE is faster than fixed-effects in this DGP.
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H Complements on the dynamic model of location choice

In this section of the appendix we provide details on our illustration to the dynamic structural model

of migration, and we report additional results.

H.1 Details on computation and estimation

Value functions. Let us denote the integrated value function as:

V t(Si,t−1) = E
[

max
j∈{1,...,J}

Vt(j, Si,t−1) + ξit(j)

∣∣∣∣Si,t−1

]
.

The alternative-specific value functions are:

Vt(j, Si,t−1) = E
[
ρWit(j)− ci(ji,t−1)1{j �= ji,t−1}+ βV t(Sit)

∣∣∣∣ jit = j, Si,t−1

]
,

where Sit =
(
j,J ji,t−1, αi

(
J ji,t−1

)
, ci

(
J ji,t−1

))
when jit = j, for J ji,t−1 = Ji,t−1 ∪ {j}. From the

functional forms we obtain (as in Rust, 1994):

V t(Si,t−1) = ln

⎛⎝ J∑
j=1

expVt(j, Si,t−1)

⎞⎠+ γ, (H1)

where γ ≈ .57 is Euler’s constant. Moreover:

Vt(j, Si,t−1) =

E
[
ρ exp

(
αi(j) +

σ2

2

)
− ci(ji,t−1)1{j �= ji,t−1}+ βV t

(
j,J ji,t−1, αi

(
J ji,t−1

)
, ci

(
J ji,t−1

)) ∣∣∣∣ jit = j, Si,t−1

]
,

(H2)

where the expectation is taken with respect to the belief distribution, which is the conditional distri-

bution of αi(j) given αi (Ji,t−1) and ci (Ji,t−1), conditional on ji,t−1 and jit = j.

Computation. To compute the solution, we first calculate the full-information value functions

and then proceed using backward induction. In the case where all locations have been visited,

Jit = {1, ..., J} so Sit = (jit, {1, ..., J}, {αi(1), ..., αi(J)}, {ci(1), ..., ci(J)}). Denote the correspond-

ing integrated value function given the most recent location j as V
J
(i, j). From (H1) and (H2) we

have:

V
J
(i, j) = ln

⎛⎝ J∑
j′=1

exp

[
ρ exp

(
αi(j

′) +
σ2

2

)
− ci(j)1{j′ �= j}+ βV

J
(i, j′)

]⎞⎠+ γ, j = 1, ..., J.

We solve this fixed-point system by successive iterations.
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Consider now a case where the agent has visited s states in set J � {1, ..., J}, and is currently at

location j. Let V
s
(i, j,J ) denote her integrated value function. The latter solves:

V
s
(i, j,J ) = ln

( ∑
j′ /∈J

exp

[
EJ ,j,j′

(
ρ exp

(
αi(j

′) +
σ2

2

)
− ci(j) + βV

s+1
(i, j′,J j′)

)]

+
∑
j′∈J

exp

[
ρ exp

(
αi(j

′) +
σ2

2

)
− ci(j)1{j′ �= j}+ βV

s
(i, j′,J )

])
+ γ,

where EJ ,j,j′ is taken with respect to the distribution of αi(j
′) given αi(J ) and ci(J ), conditional

on moving from j to j′. In practice we discretize the values of each αi(j) on a 50-point grid. In the

model with heterogeneous costs, this also implies a discretization of mobility costs given our modeling

of costs and returns (see below). In the computation of the fixed points we set a 10−11 numerical

tolerance.

Estimation. The choice probabilities entering the likelihood are given by an estimated counterpart

to (26), where the estimated value functions V̂t

(
j, ji,t−1,Ji,t−1, α̂(k̂i,Ji,t−1), c(k̂i,Ji,t−1), θ

)
solve the

system (H1)-(H2). Notice that, in the model with homogeneous costs, c does not depend on the group

or the history of locations. We estimate the conditional expectation in (H2) as a conditional mean

given α̂(k̂i,Ji,t−1) and c(k̂i,Ji,t−1), based on all job movers from Ji,t−1 to jit = j. Nonparametric or

semi-parametric methods could be used for this purpose. We use an exponential regression estimator

in the illustration, with degree one to compute expected returns, and degree two for expected value

functions. We checked these specifications provided a good fit to the conditional expectations.

Iteration. To perform the iteration, we first estimate the idiosyncratic variance of log-wages σ2 as:

σ̂2 =
1

NT

N∑
i=1

T∑
t=1

(
lnWit − α̂(k̂i, jit)

)2
. (H3)

Then, individual groups are assigned as:

k̂
(2)
i = argmax

k∈{1,...,K}

T∑
t=1

J∑
j=1

1{jit = j}
(
ln Pr

(
jit = j | ji,t−1,Ji,t−1, α̂(k,Ji,t−1), ĉ(k,Ji,t−1), θ̂

)

+ lnφ(lnWit; α̂(k, j), σ̂
2)

)
,

where φ denotes the normal density. Note that information on both wages and choices is used to

reclassify individuals.

Given group assignments, we update parameters as:

α̂(2)(k, j) =

∑N
i=1

∑T
t=1 1{k̂(2)i = k}1{jit = j} lnWit∑N

i=1

∑T
t=1 1{k̂(2)i = k}1{jit = j}

,
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with an update for σ2 analogous to (H3), and:

(θ̂
(2)
, ĉ(2)) = argmax

(θ,c)

N∑
i=1

T∑
t=1

J∑
j=1

1{jit = j} ln Pr
(
jit = j | ji,t−1,Ji,t−1, α̂

(2)(k̂
(2)
i ,Ji,t−1), c(k̂

(2)
i ,Ji,t−1), θ

)
.

This procedure may be iterated further. Note that in the update step we do not maximize the full

likelihood as a function of parameters α, c, σ2, θ. Rather, we use a partial likelihood estimator by

which we first estimate wage parameters α and σ2, and then estimate utility and cost parameters θ

and c. We use this approach for computational reasons; see Rust (1994) and Arcidiacono and Jones

(2003) for related approaches.

Specification of cost heterogeneity. In the DGP with heterogeneous costs, we specify ci(j) =

exp(c0+ c1αi(j)), where we estimate c0 and c1 using an exponential regression of the estimates ĉ(k̂i, j)

on α̂(k̂i, j) and a constant, across both groups and regions. We find ĉ0 = 0.85 and ĉ1 = 0.32. A positive

relationship between returns and mobility costs could reflect a link between costs and investments. In

the Monte Carlo, GFE recovers c0 quite well, although c1 estimates are somewhat biased downwards.

H.2 Additional results

In this subsection we show additional estimation results for the illustration in Section 5.

Parameters a and b. In Figure S1 we report analogous Monte Carlo results as in Figures 4 and

5, for the parameters a and b that govern the probability of being a “mover type”. In particular, we

see that two-step GFE and its bias-reduced and iterated versions perform quite well.

Fit of the model. The model reproduces well the probability of moving, both unconditionally and

conditional on past wages; in particular it reproduces the negative relationship between past wages

and mobility. It also reproduces means and variances of log-wages by location. However, the model

does not fit well average wages after mobility, as it tends to predict mean wage increases upon job

move while the data do not show such a pattern.

Fixed-K GFE. Until the end of this subsection we focus on the model with homogeneous costs.

We start by reporting results based on fixed values of K, from K = 2 to K = 8, in Figure S2. We

see that taking K = 2 yields imprecise estimates, in particular for ρ. In comparison, taking K = 4,

K = 6 or K = 8 results in better performance. The most accurate results are obtained taking K = 6

or K = 8 and using bias reduction and one or three iterations. Those results are close to the ones

using our method to select K (see Figure 4, where the average value for K̂ is 6.4).
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Complements: fixed-effects estimates. In the DGP with homogeneous costs, fixed-effects

estimation is computationally tractable. This is due to the fact that the α’s and the structural

parameters can be estimated sequentially. One fixed-effects estimation of the structural parameters is

about 2.5 times slower than one estimation of the model with 6 − 7 groups (an average value of K̂),

although it becomes 5 times slower in a sample with 5 times as many individuals.

Complements: random-effects estimates. To compute random-effects estimators based a

finite mixture with K = 2, K = 4, and K = 8 types, respectively, we use the EM algorithm of

Arcidiacono and Jones (2003), where wage-specific parameters and structural parameters are estimated

sequentially in each M-step of the algorithm. Setting a tolerance of 10−6 on the change in the likelihood,

the algorithm stops after 27, 80, and 339 iterations with K = 2, K = 4, and K = 8 types, respectively.

Estimation is substantially more time-consuming than when using two-step grouped fixed-effects.

I Empirical illustration: firm and worker heterogeneity

In this section of the appendix we present an empirical illustration, where we consider the question of

assessing the sources of wage dispersion across workers and firms.

I.1 Setup and main results

We consider an additive model in worker and firm heterogeneity:

Yit = ηi + ψj(i,t) + εit, (I1)

where Yit denote log-wages, worker i works in firm j(i, t) at time t, and ηi and ψj denote unobserved

attributes of worker i and firm j, respectively. Equation (I1) corresponds to the model of Abowd,

Kramarz and Margolis (1999) for matched employer-employee data, where we abstract from observed

covariates for simplicity. Our interest centers on the decomposition of the variance of log-wages into a

worker component, a firm component, a component reflecting the sorting of workers into heterogeneous

firms, and an idiosyncratic match component:

Var (yi1) = Var (ηi) + Var
(
ψj(i,1)

)
+ 2Cov

(
ηi, ψj(i,1)

)
+Var (εi1) . (I2)

Identification of firm effects ψj comes from job movements. As an example, with two time periods

the fixed-effects estimators of the ψj ’s are obtained from:

Yi2 − Yi1 = ψj(i,2) − ψj(i,1) + εi2 − εi1,

which is uninformative for workers who remain in the same firm in the two periods. When the number

of job movers into and out of firm j is low, ψj may be poorly estimated; see Andrews, Gill, Schank
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and Upward (2008) and Jochmans and Weidner (2016). This source of incidental parameter bias may

be particularly severe in short panels.

To alleviate this “low-mobility bias”, Bonhomme, Lamadon and Manresa (2019, BLM) propose to

reduce the number of firm-specific parameters by grouping firms based on firm-level observables in a

first step. Then, in a second step, the ψj ’s are recovered at the group level, thus pooling information

across job movers within firm groups. Specifically, given a kmeans-based classification {k̂j} of firms,

the ψ(k)’s are estimated based on the following criterion:

min
(ψ(1),...,ψ(K))

n∑
i=1

∥∥∥Ê(Yi2 − Yi1 | k̂j(i,1), k̂j(i,2)
)
− ψ

(
k̂j(i,2)

)
+ ψ

(
k̂j(i,1)

)∥∥∥2 ,
where Ê denotes a group-pair average and n denotes the number of workers, subject to a single

normalization (e.g., ψ(K) = 0).

This estimator is a two-step GFE estimator based on external moments. Here N is the number of

firms, T is the number of available observations to estimate the firm-specific parameters ψj (that is, T

is the number of job movers per firm), and S is the number of measurements on firm heterogeneity. In

BLM, firms are classified based on their empirical wage distribution functions. Note that a difference

with the setting of Theorem 1 is that here the likelihood function is not separable across firms, due

to the fact that two firms are linked by the workers who move between them. We conjecture that

Theorem 1 could be extended to such network settings, although formally developing this extension

exceeds the scope of this paper.

Classifying firms based on wage distribution functions. Here we outline the distribution-

based approach we use to classify firms. Let Yis denote the wage of worker s in firm i. We denote

F̂i(y) =
1
S

∑S
s=1 1{Yis ≤ y} the empirical cumulative distribution function of Yis. We classify firms

based on hi = F̂i, using the norm ‖g‖2ω =
´
g(w)2ω(w)dw, where ω is an integrable function. The

classification step then is: min
(˜h,{ki})

∑N
i=1 ‖hi − h̃(ki)‖2ω, where the h̃(k)’s are functions. In practice

we discretize the integral, leading to a weighted kmeans objective function.

Simulation exercise. We now present simulation results based on model (I1). We focus on a

two-period model, where εit are independent of j(i, 1), j(i, 2), η’s, and ψ’s, have zero means, and

are i.i.d. across workers and time. Following BLM we adopt a correlated random-effects approach to

model worker heterogeneity within firms. The parameters of the model are the firm fixed-effects ψj , the

means and variances of worker effects in each firm μj = E (ηi | j(i, 1) = j) and σ2j = Var (ηi | j(i, 1) = j),

and the variance of idiosyncratic errors s2 = Var (εi1). We will be estimating the components of the

variance decomposition in (I2). In addition we will report estimates of the correlation between worker

and firm effects, Corr
(
ηi, ψj(i,1)

)
, which is commonly interpreted as a measure of sorting.
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In the baseline DGP firm heterogeneity is continuous and three-dimensional, and its underlying

dimension equals one. Specifically, the vector of firm-specific parameters is:

αj =
(
ψj , μj , σ

2
j

)
=
(
ψj , E

(
ηi|ψj(i,1) = ψj

)
, Var

(
ηi|ψj(i,1) = ψj

))
,

so all firm-specific parameters are (nonlinear) functions of the scalar firm effects ψj . This specification

is consistent with theoretical models of worker-firm sorting where firms are characterized by their

scalar productivity level.2 Below we report simulations using several alternative designs. We study

cases where the underlying dimension of firm heterogeneity is equal to two, which allows for a second

dimension of latent firm heterogeneity in addition to the wage effects ψj (below we provide evidence

suggesting that the underlying dimension of firm heterogeneity is low in the data). We also consider

a DGP where firm heterogeneity is discrete in the population.

We start by estimating model (I1) on Swedish register data, following BLM. We select male

workers full-year employed in 2002 and 2004, and define as job movers the workers whose firm IDs

change between the two years. We focus on firms that are present throughout the period. There

are about 20,000 job movers in the sample. We use two-step GFE with a classification based on the

firms’ empirical distributions of log-wages in 2002, evaluated at 20 percentiles of the overall log-wage

distribution, with K = 10 groups. In the second step, we estimate the model’s parameters ψ̂(k̂j),

μ̂(k̂j), σ̂
2(k̂j), and ŝ

2.

Given parameter estimates, we then simulate a two-period model where firm heterogeneity is

continuously distributed. Specifically, the ψj ’s are drawn from a normal distribution, calibrated to

match the mean and variance of the ψ̂(k̂j)’s. We draw 120,000 workers in the cross-section, including

20,000 job movers. We run simulations for different firm sizes, from 10 workers per firm to 200 workers

per firm. The total number of job movers is kept constant, so the number of movers per firm increases

with firm size.

In Table S9 and Figure S3 we report the mean and 95% confidence intervals of GFE and fixed-

effects estimators of the components of the variance decomposition (I2), across 500 simulations. We

estimate the number of groups in every simulation. We see that biases of two-step GFE estimators

decrease quite rapidly when firm size grows, although biases are not negligible when firms are small.

As an example, the variance of firm effects is two thirds of the true value on average when firm size

equals 10, and 75% of the true value for a firm size of 20. Moreover, although we do not have a

theoretical justification for it in this setting, bias correction using the half-panel jackknife method of

Dhaene and Jochmans (2015) tends to provide performance improvements: for example, biases for the

variance of firm effects become 25% and 5% for firm sizes of 10 and 20, respectively. Note that here

bias correction is not associated with large increases in dispersion. To implement the bias-correction

2Here Assumption 2 requires the mapping ψj �→
(
ψj + E

(
ηi |ψj

)
,Var

(
ηi |ψj

))
to be injective. Firm-specific

means of log-wages being monotone in ψj is sufficient, though not necessary, for this to hold.
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method we select two halves within each firm at random, and we re-estimate the number of groups in

each half-sample. In addition, the last column in the table shows that the estimated number of groups

is rather small, and close to proportional to the square root of firm size (which is to be expected in

this DGP with one-dimensional underlying heterogeneity).

Lastly, in the bottom panel of Table S9 we report the results for a fixed-effects estimator, which

is computationally feasible in this linear setting. We see that fixed-effects is substantially biased.

This shows that incidental parameter bias due to low mobility is particularly acute in this DGP. The

contrast between fixed-effects and GFE is in line with Theorem 1, since here the number T of job

movers per firm is small relative to the total number S of workers in the firm which we use to group

firms. Hence, GFE, possibly combined with bias reduction, provides an effective regularization in this

context.

I.2 Complements

Asymptotic properties of the distributional first step. Let Fi(y) = Pr (Yis ≤ y |αi0) =
G(y;αi0) denote the population cumulative distribution function of Yis. Similarly to Lemma 1, the

following convergence rate holds:

1

N

N∑
i=1

∥∥∥ĥ(k̂i)−G(·;αi0)
∥∥∥2
ω
= Op

(
1

S

)
+Op (Bα(K)) ,

provided (i) 1
N

∑N
i=1 ‖F̂i − Fi‖2ω = Op(S

−1), and (ii) G(·;αi0) is Lipschitz-continuous in its second

argument. Here α �→ G(·;α) maps individual-specific parameters to functions in L2(ω). In order for

(i) to hold, a functional central limit theorem on F̂i, together with ω being integrable, will suffice. The

Lipschitz condition in (ii) will be satisfied provided
´ ∂ ln f(y |αi)

∂α
∂ ln f(y |αi)

∂α′ f(y |αi)dydx is uniformly

bounded.

For the second step to deliver estimators with similar properties as in Theorem 1, an injectivity

condition is needed. When classifying individuals based on empirical distributions, this condition does

not impose further restrictions other than αi0 being identified. Indeed, α �→ G(·, α) being injective is

equivalent to [G(·, α2) = G(·, α1)⇒ α2 = α1], which in turn is equivalent to αi0 being identified given

knowledge of the function G.

Details on estimation. Following BLM we exploit the following restrictions, where we denote as

mi = 1{j(i, 1) �= j(i, 2)} the job mobility indicator. For job movers, using the fact that mobility does

not depend on ε’s, and that εi1 is independent of εi2, we have:

E (Yi2 − Yi1 |mi = 1, j(i, 1), j(i, 2)) = ψj(i,2) − ψj(i,1), (I3)

Var (Yi2 − Yi1 |mi = 1, j(i, 1), j(i, 2)) = Var (εi2) + Var (εi1) = 2 s2. (I4)
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Then, in the first cross-section we have:

E (Yi1 | j(i, 1)) = ψj(i,1) + E (ηi | j(i, 1)) = ψj(i,1) + μj(i,1), (I5)

Var (Yi1 | j(i, 1)) = Var (ηi | j(i, 1)) + Var (εi1) = σ2j(i,1) + s2. (I6)

In estimation, we first compute a firm partition {k̂j} into K groups based on firm-specific empirical

distributions of log-wages (evaluated at 20 points). In the second step, we use the following algorithm:

1. Compute ψ̂(k̂j) based on sample counterparts to (I3).

2. Compute ŝ2 based on (I4).

3. Given ψ̂(k̂j), compute μ̂(k̂j) based on (I5).

4. Given ŝ2, compute σ̂2(k̂j) based on (I6). In practice we impose non-negativity of the variances

using a quadratic programming routine.

Given parameter estimates, we then estimates the variances and covariance in (I2) by aggregation

across types.

The fixed-effects estimator in Table S9 is computed following the same algorithm, except that K

is taken equal to N . Hence, the estimates of the firm effects ψj correspond to the estimator of Abowd,

Kramarz and Margolis (1999). However, instead of relying on a fixed-effects approach on the worker

side, in this two-period setting we rely on a correlated random-effects approach to deal with worker

heterogeneity. In that specification, the mean and variance of worker effects ηi are firm-specific. We

compute the connected set in an initial step, and use sparse matrix coding for efficient computation.

Monte Carlo designs. We consider four additional DGP, in addition to DGP 1 reported in Table

S9. In Table S7 we show the sample sizes that we use in all designs, including the average number of

job movers per firm. DGP 2 has one-dimensional underlying heterogeneity, with different parameter

values: the variance of firm effects is larger than in DGP 1, while the correlation between firm effects

and worker effects is smaller, the relative magnitudes being close to the estimates of Card, Heining

and Kline (2013). DGP 3 and DGP 4 have two-dimensional underlying heterogeneity (ψj , Vj), where

ψj is the wage firm effect and Vj drives workers’ firm choice. (ψj , Vj) are drawn from a bivariate

normal distribution, and the mean and variance of worker effects in the firm are set to μj = Vj and

σ2j = (a + bVj)
2 for some constants a, b which are calibrated to the Swedish sample. We interpret

Vj as a present value driving workers’ mobility decisions across firms, which may be only imperfectly

correlated with ψj in the presence of non-pecuniary attributes valued by workers. As displayed in

Table S8, the two-dimensional DGP differ in terms of parameter values. The last row of the table

shows the correlation between the wage firm effect ψj and the present value Vj in all DGP. Lastly,

DGP 5 has discrete heterogeneity. Specifically, there are K∗ = 10 “true” groups in the population.

The groups are chosen by approximating the firm heterogeneity of DGP 1.
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Alternative DGP with one-dimensional heterogeneity: results. In Table S10 we report

the results of two-step GFE and its bias-corrected version, as well as fixed-effects, in DGP 2 with

one-dimensional heterogeneity and a larger variance of firm effects than in Table S9. The performance

of the estimators is comparable to Table S9.

Bias-corrected fixed-effects. In Table S11 we report the results of bias-corrected fixed-effects

estimation in DGP 1 (top panel, see Table S9) and DGP 2 (bottom panel). In order to implement the

bias correction we use the half-panel jackknife of Dhaene and Jochmans (2015), splitting all workers

in every firm into two random halves, including job movers. We see that, although bias correction

improves relative to fixed-effects, the bias-corrected estimator is still substantially biased, even for

moderately large firms. Notice that some of the variance estimates are in fact negative. This is due

to the fact that the additive bias correction method does not enforce non-negativity.

Inferring the underlying dimension of firm heterogeneity. As a motivation for consid-

ering DGP with an underlying dimension higher than one, but still relatively low, we now attempt to

learn the underlying dimension of firm heterogeneity on the Swedish matched employer-employee data

set. In statistics, the literature on manifold learning aims at inferring the low intrinsic dimension of

large dimensional data; see for example Levina and Bickel (2004) and Raginsky and Lazebnik (2005).

Motivated by our method for selecting the number of groups, the method we use here consists in

comparing the length of the panel S with the number of groups K̂ estimated from (4). If the under-

lying dimension of ϕ(ξi0) is d > 0, then we expect Q̂(K) to decrease at a rate Op(K
− 2

d ) + op(S
−1).

This suggests that K̂ and S
d
2 will have a similar order of magnitude. In such a case the underlying

dimension may be inferred by plotting the relationship, for panels of different lengths, between ln K̂

and lnS, the slope of which is d̂/2.

In Figure S4 we report the results of this exercise, taking firms with more than 50 employees, and

then randomly selecting x% in each firm, where x varies between 5 and 100. The left graph shows

the shape of the objective function Q̂(K) as a function of K, in logs. In each sample the estimated

number of groups K̂ lies at the intersection of that curve and the horizontal line ln(V̂h). We use a

slight modification of the V̂h formula to deal with the fact that here the “panel” is unbalanced, since

different firms may have different sizes. On the right graph we then plot ln K̂ against the logarithm

of the average firm size in each sample (here we report results based on empirical cdfs of log-wages

evaluated at 20 points, but we checked that using 40 points instead did not affect the results). We

see that the relationship is approximately linear and the slope is close to one, suggesting that the

underlying dimension is around d̂ = 2.

Two-dimensional heterogeneity: results. In Table S12 we report the simulation results for

DGP 3 with continuous two-dimensional firm heterogeneity. The results for DGP 4, with a smaller
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variance of firm effects, are reported in Table S14. The results are shown graphically in Figures S5

and S6. Focusing on the first panel, which corresponds to our recommended choice for the selection

rule of the number of groups (that is, taking γ = 1 in (4)), we see that the two-step estimators

show larger biases than in the one-dimensional case, especially for the variance of firm effects and the

correlation parameter. Moreover, bias correction does not succeed at reducing the bias substantially.

This suggests that, for the selected number of groups, the approximation error is still substantial. At

the same time, as shown by the two bottom panels of the tables, taking γ = .5 and γ = .25 improves

the performance of the two-step estimator. Notice that while the selected number of groups K̂ is

monotone in firm size for γ = 1 and γ = .5, it is not monotone for γ = .25. This is a finite sample

issue: when taking γ = .25 and focusing on large firms the number of groups is no longer negligible

with respect to the number of firms in the sample. Lastly, performance is further improved when using

the bias-reduced estimator.

As pointed out in Section 4, features of the model may be exploited to improve the classification.

In the two-dimensional designs DGP 3 and DGP 4, we perform the following moment-based iteration.

The two-step method delivers estimates of the mean and variance of worker effects ηi in firm group

k̂j : μ̂(k̂j) and σ̂
2(k̂j), respectively. Regressing

√
σ̂2(k̂j) on μ̂(k̂j) and a constant then gives estimates

b̂ and â. Given those, we construct the (iterated) moments:

h1j = Ê(Yi1 | j)−
√
V̂ar(Yi1 | j)− ŝ2 − â

b̂
, h2j =

√
V̂ar(Yi1 | j)− ŝ2 − â

b̂
,

where Ê and V̂ar denote firm-specific means and variances. Those moments will be consistent for ψj

and Vj , respectively, as S tends to infinity. We then apply two-step GFE to the moments h1j and

h2j . In Tables S14 and S15 we report the results for the iterated estimator (only iterated once) and

its bias-corrected version, for DGP 3 and DGP 4, respectively. We see that the iteration improves

performance substantially for DGP 3, although it has small effects on performance in DGP 4.

Low mobility bias and regularization. As shown by Theorem 1, a benefit of discretizing

unobserved heterogeneity is that it can reduce the incidental parameter bias of fixed-effects estimators.

In the illustration on matched employer-employee data, fixed-effects estimators may be biased due to

low rates of worker mobility between firms. In order to assess the impact of mobility rates on the

performance of fixed-effects and GFE estimators, in Figures S7 and S8 we report the results of the

estimated variance decomposition on 500 simulations, comparing fixed-effects, bias-corrected fixed-

effects, two-step GFE with bias correction, and iterated two-step GFE with bias correction. We

perform simulations for different number of job movers per firm, from 2 to 10 (shown on the x-axis),

and a fixed firm size of 50. The two figures show the results for the two-dimensional DGP: DGP 3 and

DGP 4, respectively. We see a striking difference between fixed-effects and GFE: while the former is

very sensitive to the number of job movers, the latter is virtually insensitive. In particular, for low
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numbers of job movers fixed-effects and its bias-corrected counterpart are severely biased, while the

biases of GFE remain moderate. This is in line with Theorem 1. It is worth noting that the average

number of job movers per firm is around 0.5 in the original Swedish sample. This suggests that, at

least in short panels, the discrete regularization achieved in GFE may result in practical improvements

relative to fixed-effects in data sets of realistic dimensions.

Discrete heterogeneity: results. Finally, in Table S16 we report results for a discrete DGP

(DGP 5) where all firm population parameters are constant within groups k̂j , with K
∗ = 10. In this

case the results of two-step GFE with K = K∗ turn out to be quite similar to those obtained in

the continuous DGP in Table S9. However, as the last column in the table shows, in this discrete

DGP misclassification frequencies are sizable: 69% misclassification when firm size equals 10, and

still 23% when size is 100. We computed misclassification frequencies by solving a linear assignment

problem using the simplex algorithm in every simulation. This suggests that, for this DGP, an “oracle”

asymptotic theory based on the premise that group misclassification is absent in the limit may not

provide reliable guidance for finite sample inference, even when the true number of groups is known.

Lastly, the table shows some evidence that bias correction (where the number of groups is estimated

in every simulation) improves the performance of the estimator in this setting too.
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Table S1: Coverage probabilities

A. Probit with fixed effects

Two-step Iterated Fixed Effects

analytical bootstrap analytical bootstrap analytical bootstrap

DGP UC BC UC BC UC BC UC BC UC BC UC BC

1 0.874 0.914 0.870 0.944 0.010 0.898 0.014 0.934 0.010 0.906 0.012 0.902

1∗ 0.864 0.948 0.878 0.944 0.006 0.932 0.008 0.952 0.010 0.906 0.012 0.902

2 0.000 0.000 0.000 0.000 0.022 0.858 0.030 0.952 0.010 0.920 0.014 0.922

2∗ 0.092 0.544 0.142 0.852 0.006 0.866 0.020 0.930 0.010 0.920 0.014 0.922

3 0.000 0.000 0.000 0.000 0.002 0.700 0.004 0.884 0.000 0.848 0.002 0.858

4 0.000 0.000 0.000 0.000 0.000 0.634 0.008 0.816 0.002 0.758 0.002 0.796

B. Probit with time-varying unobservables

Two-step Iterated Fixed Effects

analytical bootstrap analytical bootstrap analytical bootstrap

DGP UC BC UC BC UC BC UC BC UC BC UC BC

1 0.896 0.846 0.732 0.876 0.000 0.518 0.000 1.000 – – – –

1∗ 0.876 0.730 0.680 0.670 0.000 0.226 0.000 0.952 – – – –

2 0.000 0.000 0.000 0.000 0.018 0.268 0.074 0.994 – – – –

2∗ 0.002 0.234 0.082 0.970 0.000 0.030 0.000 0.520 – – – –

3 0.000 0.000 0.000 0.000 0.000 0.326 0.000 1.000 – – – –

4 0.000 0.000 0.000 0.000 0.000 0.388 0.000 1.000 – – – –

C. Probit with random coefficients

Two-step Iterated Fixed Effects

analytical bootstrap analytical bootstrap analytical bootstrap

DGP UC BC UC BC UC BC UC BC UC BC UC BC

3 0.000 0.000 0.000 0.000 0.002 0.398 0.002 0.876 0.000 0.160 0.000 0.464

4 0.000 0.000 0.000 0.000 0.020 0.380 0.042 0.928 0.000 0.172 0.000 0.812

Notes: See notes to Tables 1 and 2. The analytical coverage is based on an estimate of the asymptotic variance

matrix. The bootstrap is clustered at the individual level, computed using 100 bootstrap simulations. Coverage

probabilities for a nominal level of 95%. Results of 500 simulations.
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Table S2: Estimated K, unconditional rule

A. Probit with fixed effects

K̂ Two-step Iterated

DGP full half UC BC UC BC

1 11.8 (0.41) 8.45 (0.50) 0.985 (0.019) 1.002 (0.019) 1.087 (0.021) 0.999 (0.021)

2 20.31 (0.69) 12.48 (0.50) 0.940 (0.018) 0.970 (0.024) 1.088 (0.022) 0.998 (0.022)

Conditional Methods

Linear Cubic Neural network

DGP UC BC UC BC UC BC

1 1.043 (0.019) 1.002 (0.021) 1.059 (0.020) 1.014 (0.022) 1.079 (0.020) 1.027 (0.024)

2 1.001 (0.020) 0.971 (0.024) 1.017 (0.021) 0.991 (0.026) 1.035 (0.023) 1.016 (0.029)

B. Probit with time-varying heterogeneity

K̂ Two-step Iterated

DGP full half UC BC UC BC

1 11.92 (0.38) 12.0 (0.4), 8.0 (0.2) 1.015 (0.021) 1.028 (0.025) 1.319 (0.039) 1.093 (0.070)

2 21.69 (0.78) 20.5 (0.7), 11.1 (0.4) 0.889 (0.023) 0.935 (0.037) 1.278 (0.044) 1.196 (0.080)

Conditional Methods

Linear Cubic Neural network

DGP UC BC UC BC UC BC

1 1.110 (0.023) 1.027 (0.032) 1.186 (0.027) 1.087 (0.040) 1.195 (0.029) 1.143 (0.045)

2 1.041 (0.028) 1.056 (0.046) 1.096 (0.035) 1.098 (0.060) 1.085 (0.035) 1.144 (0.062)

Notes: See notes to Tables 1 and 2. We estimate K using (4), with γ = 1.
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Table S3: Estimated K, conditional rule

A. Probit with fixed effects

K̂ Two-step Iterated

DGP full half UC BC UC BC

1 4.98 (0.13) 4.00 (0.00) 0.999 (0.018) 1.013 (0.019) 1.094 (0.021) 1.008 (0.022)

2 5.90 (0.30) 5.00 (0.06) 0.744 (0.034) 0.774 (0.066) 1.070 (0.022) 1.001 (0.025)

3 5.00 (0.00) 4.83 (0.38) 0.757 (0.021) 0.763 (0.028) 1.078 (0.026) 0.969 (0.033)

4 4.02 (0.15) 4.00 (0.00) 0.749 (0.022) 0.754 (0.028) 1.069 (0.029) 0.949 (0.038)

Conditional Methods

Linear Cubic Neural network

DGP UC BC UC BC UC BC

1 1.041 (0.019) 0.999 (0.020) 1.066 (0.020) 1.011 (0.022) 1.080 (0.021) 1.030 (0.024)

2 0.944 (0.019) 0.910 (0.024) 1.005 (0.020) 0.980 (0.025) 1.021 (0.022) 1.003 (0.028)

3 0.923 (0.023) 0.903 (0.035) 0.924 (0.026) 0.923 (0.040) 1.004 (0.027) 0.992 (0.044)

4 0.894 (0.024) 0.875 (0.038) 0.893 (0.026) 0.897 (0.041) 0.996 (0.034) 0.982 (0.059)

Notes: See notes to Table 1. We implement the choice of K described in Appendix B.2, based on a linear

conditional kmeans specification, and Kmax = 30.
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Table S4: Estimated K, conditional rule (cont.)

B. Probit with time-varying heterogeneity

K̂ Two-step Iterated

DGP full half UC BC UC BC

1 5.04 (0.19) 4.5 (0.5), 4.0 (0.1) 1.029 (0.019) 1.020 (0.025) 1.191 (0.031) 1.119 (0.055)

2 7.25 (0.51) 6.0 (0.4), 5.0 (0.1) 0.631 (0.044) 0.692 (0.086) 1.082 (0.038) 1.159 (0.070)

3 5.05 (0.21) 5.0 (0.1), 4.0 (0.2) 0.562 (0.027) 0.547 (0.039) 1.082 (0.040) 1.060 (0.062)

4 4.17 (0.38) 4.3 (0.5), 3.1 (0.3) 0.559 (0.025) 0.542 (0.035) 1.046 (0.042) 1.026 (0.070)

Conditional Methods

Linear Cubic Neural network

DGP UC BC UC BC UC BC

1 1.065 (0.020) 1.012 (0.0269) 1.125 (0.022) 1.079 (0.034) 1.136 (0.027) 1.092 (0.046)

2 0.906 (0.028) 0.922 (0.046) 0.955 (0.031) 0.956 (0.057) 0.979 (0.035) 1.020 (0.063)

3 0.845 (0.035) 0.851 (0.064) 0.760 (0.045) 0.771 (0.080) 0.948 (0.041) 0.994 (0.083)

4 0.802 (0.032) 0.834 (0.056) 0.753 (0.037) 0.782 (0.066) 0.923 (0.054) 0.981 (0.104)

C. Probit with random coefficients

K̂ Two-step Iterated

DGP full half UC BC UC BC

3 5.08 (0.28) 4.86 (0.40) 0.690 (0.023) 0.699 (0.028) 1.035 (0.025) 0.949 (0.037)

4 4.31 (0.46) 4.11 (0.32) 0.594 (0.029) 0.602 (0.034) 0.976 (0.034) 0.917 (0.058)

Conditional Methods

Linear Cubic Neural network

DGP UC BC UC BC UC BC

3 0.879 (0.028) 0.864 (0.038) 0.909 (0.026 0.889 (0.039) 0.982 (0.025) 0.947 (0.040)

4 0.765 (0.032) 0.756 (0.049) 0.798 (0.045) 0.805 (0.073) 0.923 (0.044) 0.893 (0.084)

Notes: See notes to Table 2. We implement the choice of K described in Appendix B.2, based on a linear

conditional kmeans specification, and Kmax = 30.
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Table S5: Starting values in kmeans

DGP 1

� starting values 1 5 10 50 100 500 1000

within 0.027 0.007 0.004 0.002 0.001 0.000 0.000

between 3.110 3.118 3.121 3.127 3.130 3.132 3.133

total 3.137 3.125 3.125 3.128 3.131 3.133 3.134

within (% total) 0.9% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0%

DGP 2

� starting values 1 5 10 50 100 500 1000

within 1.730 0.634 0.384 0.121 0.068 0.018 0.010

between 2.815 3.192 3.387 3.568 3.589 3.603 3.606

total 4.522 3.814 3.761 3.681 3.650 3.614 3.609

within (% total) 38.3% 16.6% 10.2% 3.3% 1.9% 0.5% 0.3%

DGP 3

� starting values 1 5 10 50 100 500 1000

within 0.894 0.675 0.581 0.354 0.281 0.148 0.112

between 2.705 2.866 2.959 3.185 3.271 3.450 3.486

total 3.585 3.529 3.529 3.529 3.543 3.589 3.590

within (% total) 24.9% 19.1% 16.5% 10.0% 7.9% 4.1% 3.1%

DGP 4

� starting values 1 5 10 50 100 500 1000

within 1.023 0.847 0.781 0.621 0.549 0.395 0.338

between 3.553 3.618 3.689 3.853 3.909 4.090 4.158

total 4.560 4.449 4.455 4.460 4.445 4.473 4.485

within (% total) 22.4% 19.0% 17.5% 13.9% 12.3% 8.8% 7.5%

Notes: See notes to Table 1. Let n be a number of starting values. In each of the 500 simulated samples,

we compute 100 kmeans partitions starting at n randomly generated values and the resulting two-step GFE

estimators. We then report the total variance across samples and kmeans runs, as well as the between-sample

and within-sample variances. All variances are multiplied by 10000.
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Table S6: Computation Time (in seconds)

N 100 500 1000 5000 10000

Kmeans 0.11 0.12 0.16 0.66 1.51

Two-step GFE 0.12 0.15 0.21 1.11 2.71

Iterated GFE 0.28 0.58 0.94 7.07 20.1

Fixed-effects 0.02 0.16 0.50 11.7 93.5

Notes: Computation time for various estimators in the random coefficients probit model of DGP 3. See notes to

Table 2. We use sparse matrix computation to compute the fixed-effects estimator, and we use parallel computing

for kmeans. Computations are performed on a 20 CPU core machine.

Table S7: Firms and workers, sample sizes

Firm size Number firms Number job movers

per firm

10 10000 2

20 5000 4

50 2000 10

100 1000 20

200 500 40

Notes: Sample sizes for different firm sizes, all DGP.
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Table S8: Firms and workers, different DGP

small V ar(ψ) large V ar(ψ)

1D 2D 1D 2D

V ar(ψ) 0.0017 0.0017 0.0204 0.0204
2.0% 2.0% 21.2% 21.2%

V ar(η) 0.0758 0.0758 0.0660 0.0660
85.2% 85.2% 68.4% 68.4%

2Cov(ψ, η) 0.0057 0.0057 0.0050 0.0050
12.8% 12.8% 10.4% 10.4%

Corr(ψ, η) 0.4963 0.4963 0.1373 0.1373
V ar(ε) 0.0341 0.0341 0.0341 0.0341

Corr(V, ψ) 1.0000 0.7130 1.0000 0.2540

Notes: The four columns show the parameter values and overall shares of variance in DGP 1, DGP

4, DGP 2, and DGP 3, respectively.
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Table S9: Estimates of firm and worker heterogeneity across simulations

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values

- 0.0758 0.0017 0.0057 0.4963 0.0341

two-step estimator

10 0.0775 0.0011 0.0048 0.5281 0.0348 3.0
[0.076,0.079] [0.001,0.001] [0.005,0.005] [0.519,0.537] [0.034,0.035] [3,3]

20 0.0769 0.0013 0.0051 0.5091 0.0345 4.0
[0.076,0.078] [0.001,0.002] [0.005,0.005] [0.500,0.518] [0.034,0.035] [4,4]

50 0.0764 0.0015 0.0054 0.4986 0.0343 6.0
[0.075,0.078] [0.001,0.002] [0.005,0.006] [0.490,0.507] [0.034,0.035] [6,6]

100 0.0761 0.0016 0.0055 0.4955 0.0342 8.4
[0.075,0.077] [0.001,0.002] [0.005,0.006] [0.487,0.504] [0.034,0.035] [8,9]

200 0.0760 0.0017 0.0056 0.4930 0.0342 11.3
[0.075,0.077] [0.001,0.002] [0.005,0.006] [0.483,0.503] [0.034,0.035] [11,12]

two-step estimator, bias-corrected

10 0.0778 0.0013 0.0047 0.4511 0.0346
[0.076,0.079] [0.001,0.002] [0.004,0.005] [0.439,0.463] [0.034,0.035]

20 0.0763 0.0016 0.0055 0.4902 0.0343
[0.075,0.078] [0.001,0.002] [0.005,0.006] [0.479,0.501] [0.034,0.035]

50 0.0762 0.0017 0.0055 0.4876 0.0342
[0.075,0.078] [0.001,0.002] [0.005,0.006] [0.476,0.499] [0.034,0.035]

100 0.0759 0.0017 0.0056 0.4923 0.0341
[0.075,0.077] [0.002,0.002] [0.005,0.006] [0.481,0.502] [0.034,0.035]

200 0.0759 0.0017 0.0056 0.4909 0.0341
[0.074,0.077] [0.002,0.002] [0.005,0.006] [0.480,0.503] [0.033,0.035]

fixed-effects estimator

10 0.1342 0.0342 -0.0267 -0.3949 0.0173
[0.132,0.136] [0.033,0.036] [-0.028,-0.025] [-0.409,-0.382] [0.017,0.018]

20 0.1002 0.0130 -0.0056 -0.1548 0.0256
[0.099,0.102] [0.012,0.014] [-0.006,-0.005] [-0.169,-0.139] [0.025,0.026]

50 0.0848 0.0055 0.0019 0.0895 0.0307
[0.083,0.086] [0.005,0.006] [0.002,0.002] [0.072,0.107] [0.030,0.031]

100 0.0802 0.0035 0.0039 0.2311 0.0324
[0.079,0.082] [0.003,0.004] [0.004,0.004] [0.212,0.250] [0.032,0.033]

200 0.0780 0.0026 0.0048 0.3359 0.0333
[0.077,0.079] [0.002,0.003] [0.004,0.005] [0.319,0.352] [0.033,0.034]

Notes: Means and 95% confidence intervals. Unobserved heterogeneity is continuously distributed in

the DGP. The number of groups K̂ is estimated in every replication, using (4) with γ = 1, and it is

reported in the last column of the first panel. We use the kmeans routine from R, with 100 starting

values. 500 simulations.
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Table S10: Estimates of firm and worker heterogeneity across simulations, one-dimensional firm

heterogeneity, large variance of firm effects

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values

- 0.0660 0.0204 0.0050 0.1373 0.0341

two-step estimator

10 0.0605 0.0124 0.0078 0.2868 0.0422 3.0
[0.059,0.062] [0.012,0.013] [0.008,0.008] [0.275,0.300] [0.041,0.043] [3,3]

20 0.0626 0.0155 0.0068 0.2178 0.0392 4.0
[0.061,0.064] [0.015,0.016] [0.006,0.007] [0.205,0.230] [0.038,0.040] [4,4]

50 0.0645 0.0180 0.0058 0.1714 0.0365 6.0
[0.063,0.066] [0.017,0.019] [0.005,0.006] [0.158,0.183] [0.036,0.037] [6,6]

100 0.0653 0.0191 0.0054 0.1542 0.0354 8.0
[0.064,0.066] [0.018,0.020] [0.005,0.006] [0.141,0.166] [0.035,0.036] [8,8]

200 0.0657 0.0198 0.0052 0.1448 0.0348 10.9
[0.065,0.067] [0.019,0.021] [0.005,0.006] [0.132,0.157] [0.034,0.035] [10,12]

two-step estimator, bias-corrected

10 0.0650 0.0149 0.0056 0.1445 0.0397
[0.064,0.066] [0.014,0.016] [0.005,0.006] [0.127,0.163] [0.039,0.041]

20 0.0647 0.0185 0.0057 0.1499 0.0361
[0.063,0.066] [0.018,0.019] [0.005,0.006] [0.133,0.167] [0.035,0.037]

50 0.0656 0.0202 0.0053 0.1416 0.0344
[0.064,0.067] [0.019,0.021] [0.005,0.006] [0.126,0.155] [0.034,0.035]

100 0.0661 0.0202 0.0050 0.1371 0.0344
[0.065,0.067] [0.019,0.021] [0.005,0.005] [0.122,0.150] [0.034,0.035]

200 0.0661 0.0204 0.0050 0.1361 0.0342
[0.065,0.067] [0.020,0.021] [0.005,0.005] [0.123,0.149] [0.033,0.035]

fixed-effects estimator

10 0.1252 0.0528 -0.0273 -0.3357 0.0173
[0.123,0.127] [0.051,0.055] [-0.029,-0.026] [-0.346,-0.324] [0.017,0.018]

20 0.0908 0.0318 -0.0063 -0.1165 0.0256
[0.090,0.092] [0.031,0.033] [-0.007,-0.006] [-0.127,-0.105] [0.025,0.026]

50 0.0752 0.0242 0.0013 0.0301 0.0307
[0.074,0.076] [0.023,0.025] [0.001,0.002] [0.019,0.041] [0.030,0.031]

100 0.0705 0.0222 0.0033 0.0827 0.0324
[0.069,0.072] [0.021,0.023] [0.003,0.004] [0.071,0.095] [0.032,0.033]

200 0.0683 0.0213 0.0041 0.1085 0.0333
[0.067,0.069] [0.021,0.022] [0.004,0.005] [0.096,0.120] [0.033,0.034]

Notes: See notes to Table S9. Results for DGP 2.
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Table S11: Bias-corrected fixed-effects estimators, one-dimensional firm heterogeneity

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1)

one-dimensional, small firm effect

- 0.0758 0.0017 0.0057 0.4963 0.0341

fixed-effects, bias-corrected

10 0.0065 -0.0717 0.0791 -0.0976 0.0300
[-0.004,0.016] [-0.082,-0.064] [0.071,0.089] [-0.125,-0.072] [0.029,0.031]

20 0.0645 -0.0098 0.0172 0.0973 0.0339
[0.062,0.067] [-0.011,-0.008] [0.016,0.019] [0.073,0.125] [0.033,0.035]

50 0.0733 -0.0007 0.0082 0.3069 0.0341
[0.072,0.075] [-0.001,-0.000] [0.008,0.009] [0.279,0.335] [0.033,0.035]

100 0.0748 0.0007 0.0067 0.4173 0.0341
[0.073,0.076] [0.000,0.001] [0.006,0.007] [0.388,0.447] [0.033,0.035]

200 0.0753 0.0012 0.0062 0.4822 0.0341
[0.074,0.077] [0.001,0.002] [0.006,0.007] [0.451,0.512] [0.033,0.035]

one-dimensional, large firm effect

- 0.0660 0.0204 0.0050 0.1373 0.0341

fixed-effects, bias-corrected

10 -0.0036 -0.0533 0.0788 -0.0077 0.0301
[-0.013,0.006] [-0.062,-0.045] [0.070,0.088] [-0.034,0.019] [0.029,0.031]

20 0.0547 0.0089 0.0166 0.1163 0.0339
[0.053,0.057] [0.007,0.011] [0.015,0.018] [0.096,0.137] [0.033,0.035]

50 0.0636 0.0180 0.0075 0.1561 0.0341
[0.062,0.065] [0.017,0.019] [0.007,0.008] [0.139,0.173] [0.033,0.035]

100 0.0650 0.0194 0.0061 0.1554 0.0341
[0.064,0.066] [0.019,0.020] [0.006,0.007] [0.139,0.171] [0.033,0.035]

200 0.0656 0.0199 0.0055 0.1487 0.0341
[0.064,0.067] [0.019,0.021] [0.005,0.006] [0.133,0.164] [0.033,0.035]

Notes: Means and 95% confidence intervals. Unobserved heterogeneity is continuously distributed in

the DGP. Bias correction is based on splitting both job movers and job stayers into two sub-samples.

The top panel shows the results on DGP 1, with a small variance of firm effects, while the bottom

panel shows the results for DGP 2, with a larger variance of firm effects. 500 simulations.
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Table S12: Firm and worker effects, two-dimensional firm heterogeneity, large V ar(ψ), different choices of γ

two-step estimator two-step estimator, bias corrected

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂ Var (ηi) Var

(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values true values

- 0.0660 0.0204 0.0050 0.1373 0.0341 0.0660 0.0204 0.0050 0.1373 0.0341

γ = 1.0 γ = 1.0

10 0.0513 0.0098 0.0124 0.5500 0.0448 4.0 0.0529 0.0112 0.0115 0.4574 0.0434 4.2
[0.050,0.053] [0.009,0.010] [0.012,0.013] [0.539,0.563] [0.044,0.045] [4,4] [0.050,0.055] [0.010,0.012] [0.011,0.012] [0.437,0.486] [0.042,0.044] [4,5]

20 0.0515 0.0112 0.0124 0.5180 0.0433 5.7 0.0514 0.0126 0.0125 0.4856 0.0420 7.4
[0.049,0.053] [0.010,0.012] [0.012,0.013] [0.498,0.536] [0.042,0.044] [5,6] [0.049,0.053] [0.011,0.014] [0.012,0.013] [0.454,0.509] [0.041,0.043] [6,8]

50 0.0514 0.0123 0.0124 0.4939 0.0423 8.9 0.0513 0.0131 0.0125 0.4797 0.0415 11.8
[0.049,0.054] [0.012,0.013] [0.012,0.013] [0.471,0.512] [0.041,0.043] [8,9] [0.049,0.054] [0.012,0.014] [0.012,0.013] [0.451,0.505] [0.041,0.043] [10,12]

100 0.0519 0.0128 0.0124 0.4796 0.0416 13.3 0.0520 0.0133 0.0123 0.4664 0.0411 17.9
[0.049,0.054] [0.012,0.014] [0.012,0.013] [0.453,0.503] [0.041,0.043] [13,14] [0.049,0.055] [0.013,0.014] [0.011,0.013] [0.436,0.496] [0.040,0.042] [17,20]

200 0.0548 0.0147 0.0104 0.3683 0.0399 21.4 0.0579 0.0165 0.0089 0.2713 0.0381 30.1
[0.051,0.058] [0.014,0.016] [0.009,0.012] [0.303,0.426] [0.039,0.041] [20,23] [0.053,0.062] [0.015,0.018] [0.006,0.011] [0.168,0.374] [0.037,0.040] [28,33]

γ = 0.5 γ = 0.5

10 0.0498 0.0110 0.0134 0.5730 0.0435 12.8 0.0386 0.0126 0.0123 0.5385 0.0419 14.0
[0.048,0.053] [0.010,0.012] [0.013,0.014] [0.555,0.589] [0.043,0.044] [12,13] [0.031,0.046] [0.012,0.013] [0.012,0.013] [0.494,0.578] [0.041,0.043] [12,15]

20 0.0510 0.0123 0.0125 0.4997 0.0423 16.1 0.0520 0.0136 0.0116 0.4297 0.0410 19.7
[0.049,0.052] [0.012,0.013] [0.012,0.013] [0.482,0.519] [0.041,0.043] [16,17] [0.049,0.054] [0.013,0.014] [0.011,0.012] [0.402,0.460] [0.040,0.042] [19,22]

50 0.0536 0.0140 0.0113 0.4134 0.0407 26.0 0.0556 0.0152 0.0104 0.3484 0.0394 34.4
[0.052,0.056] [0.013,0.015] [0.011,0.012] [0.389,0.437] [0.040,0.042] [24,28] [0.053,0.058] [0.015,0.016] [0.010,0.011] [0.312,0.378] [0.039,0.040] [30,38]

100 0.0563 0.0153 0.0099 0.3371 0.0392 38.8 0.0589 0.0168 0.0086 0.2635 0.0377 52.9
[0.053,0.059] [0.014,0.016] [0.009,0.011] [0.300,0.376] [0.038,0.040] [36,41] [0.056,0.062] [0.016,0.018] [0.007,0.010] [0.205,0.314] [0.036,0.039] [48,57]

200 0.0596 0.0171 0.0085 0.2662 0.0375 53.2 0.0626 0.0187 0.0070 0.1948 0.0359 71.8
[0.056,0.063] [0.016,0.018] [0.007,0.010] [0.214,0.314] [0.037,0.039] [49,57] [0.058,0.067] [0.018,0.020] [0.005,0.009] [0.129,0.247] [0.035,0.037] [65,78]

γ = 0.25 γ = 0.25

10 0.0595 0.0119 0.0132 0.4988 0.0428 125.6 0.0504 0.0136 0.0117 0.4379 0.0411 152.6
[0.058,0.062] [0.011,0.013] [0.013,0.014] [0.477,0.514] [0.042,0.043] [121,130] [0.047,0.054] [0.013,0.014] [0.011,0.012] [0.400,0.465] [0.040,0.042] [145,160]

20 0.0567 0.0134 0.0119 0.4318 0.0412 138.3 0.0536 0.0149 0.0106 0.3677 0.0397 163.7
[0.055,0.058] [0.013,0.014] [0.011,0.012] [0.409,0.447] [0.040,0.042] [132,143] [0.051,0.057] [0.014,0.016] [0.010,0.011] [0.335,0.394] [0.039,0.040] [153,172]

50 0.0574 0.0155 0.0099 0.3316 0.0391 154.0 0.0582 0.0170 0.0085 0.2622 0.0376 190.1
[0.055,0.059] [0.015,0.016] [0.009,0.011] [0.300,0.357] [0.038,0.040] [146,163] [0.055,0.061] [0.016,0.018] [0.007,0.009] [0.217,0.301] [0.037,0.039] [177,204]

100 0.0601 0.0171 0.0083 0.2598 0.0374 151.1 0.0624 0.0186 0.0069 0.1932 0.0359 186.1
[0.057,0.063] [0.016,0.018] [0.007,0.010] [0.222,0.303] [0.037,0.038] [142,163] [0.059,0.066] [0.018,0.019] [0.006,0.008] [0.151,0.240] [0.035,0.037] [172,202]

200 0.0626 0.0186 0.0069 0.2027 0.0361 133.7 0.0649 0.0199 0.0056 0.1512 0.0348 162.3
[0.058,0.066] [0.018,0.020] [0.005,0.009] [0.156,0.251] [0.035,0.037] [127,141] [0.060,0.069] [0.019,0.021] [0.004,0.007] [0.095,0.205] [0.034,0.036] [151,176]

Notes: Means and 95% confidence intervals. Unobserved heterogeneity is continuously distributed in the DGP, with underlying dimension

equal to 2. The number of groups K is estimated in every replication, with different choices for γ in (4). 500 simulations. Results for

DGP 3.
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Table S13: Firm and worker effects, two-dimensional firm heterogeneity, small V ar(ψ), different choices of γ

two-step estimator two-step estimator, bias corrected

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂ Var (ηi) Var

(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values true values

- 0.0758 0.0017 0.0057 0.4963 0.0341 0.0758 0.0017 0.0057 0.4963 0.0341

γ = 1.0 γ = 1.0

10 0.0759 0.0008 0.0056 0.7010 0.0350 4.0 0.0760 0.0009 0.0056 0.6487 0.0349 4.0
[0.074,0.078] [0.001,0.001] [0.005,0.006] [0.691,0.709] [0.034,0.036] [4,4] [0.074,0.078] [0.001,0.001] [0.005,0.006] [0.636,0.660] [0.034,0.036] [4,4]

20 0.0754 0.0009 0.0059 0.6927 0.0349 5.5 0.0749 0.0011 0.0061 0.6846 0.0348 6.9
[0.073,0.077] [0.001,0.001] [0.005,0.006] [0.680,0.707] [0.034,0.036] [5,6] [0.073,0.077] [0.001,0.001] [0.006,0.007] [0.666,0.705] [0.034,0.035] [6,8]

50 0.0750 0.0011 0.0061 0.6877 0.0348 8.0 0.0747 0.0011 0.0062 0.6841 0.0347 10.0
[0.073,0.078] [0.001,0.001] [0.006,0.007] [0.674,0.701] [0.034,0.035] [8,8] [0.072,0.078] [0.001,0.001] [0.006,0.007] [0.669,0.701] [0.034,0.035] [10,10]

100 0.0752 0.0011 0.0062 0.6848 0.0347 11.1 0.0750 0.0011 0.0063 0.6816 0.0347 14.2
[0.072,0.079] [0.001,0.001] [0.006,0.007] [0.668,0.701] [0.034,0.035] [11,12] [0.072,0.078] [0.001,0.001] [0.006,0.007] [0.660,0.702] [0.034,0.035] [14,16]

200 0.0746 0.0011 0.0062 0.6765 0.0347 15.2 0.0745 0.0012 0.0062 0.6720 0.0347 19.3
[0.069,0.079] [0.001,0.001] [0.006,0.007] [0.654,0.697] [0.034,0.035] [14,16] [0.069,0.079] [0.001,0.001] [0.006,0.007] [0.647,0.694] [0.034,0.035] [17,21]

γ = 0.5 γ = 0.5

10 0.0748 0.0010 0.0062 0.7333 0.0349 12.2 0.0731 0.0011 0.0062 0.6905 0.0348 12.7
[0.073,0.076] [0.001,0.001] [0.006,0.007] [0.720,0.746] [0.034,0.036] [12,13] [0.070,0.076] [0.001,0.001] [0.006,0.007] [0.664,0.715] [0.034,0.035] [12,14]

20 0.0747 0.0010 0.0062 0.7076 0.0348 15.1 0.0746 0.0011 0.0063 0.6814 0.0347 18.0
[0.073,0.076] [0.001,0.001] [0.006,0.007] [0.696,0.717] [0.034,0.035] [15,16] [0.073,0.076] [0.001,0.001] [0.006,0.007] [0.664,0.695] [0.034,0.035] [18,20]

50 0.0744 0.0011 0.0062 0.6858 0.0347 21.6 0.0744 0.0012 0.0062 0.6717 0.0347 27.0
[0.072,0.077] [0.001,0.001] [0.006,0.007] [0.671,0.700] [0.034,0.035] [20,23] [0.072,0.077] [0.001,0.001] [0.006,0.007] [0.643,0.691] [0.034,0.035] [24,30]

100 0.0743 0.0011 0.0062 0.6709 0.0347 28.2 0.0743 0.0012 0.0062 0.6584 0.0347 35.7
[0.071,0.078] [0.001,0.001] [0.006,0.007] [0.649,0.690] [0.034,0.035] [26,31] [0.071,0.078] [0.001,0.001] [0.006,0.007] [0.626,0.684] [0.034,0.035] [32,40]

200 0.0751 0.0012 0.0062 0.6542 0.0347 35.0 0.0751 0.0012 0.0062 0.6409 0.0346 44.0
[0.071,0.079] [0.001,0.001] [0.006,0.007] [0.631,0.683] [0.034,0.035] [31,39] [0.071,0.080] [0.001,0.001] [0.006,0.007] [0.603,0.681] [0.034,0.035] [38,50]

γ = 0.25 γ = 0.25

10 0.0796 0.0012 0.0062 0.6355 0.0346 124.3 0.0699 0.0013 0.0061 0.6190 0.0345 148.7
[0.078,0.082] [0.001,0.001] [0.006,0.007] [0.605,0.657] [0.034,0.035] [121,127] [0.066,0.073] [0.001,0.002] [0.006,0.007] [0.566,0.658] [0.034,0.035] [142,154]

20 0.0758 0.0013 0.0061 0.6242 0.0346 131.0 0.0721 0.0014 0.0060 0.6086 0.0345 150.3
[0.074,0.078] [0.001,0.001] [0.006,0.007] [0.602,0.643] [0.034,0.035] [125,137] [0.070,0.074] [0.001,0.002] [0.006,0.006] [0.567,0.647] [0.034,0.035] [140,160]

50 0.0752 0.0014 0.0061 0.6020 0.0345 134.7 0.0749 0.0014 0.0060 0.5800 0.0344 159.0
[0.072,0.077] [0.001,0.002] [0.006,0.007] [0.572,0.624] [0.034,0.035] [127,142] [0.072,0.077] [0.001,0.002] [0.006,0.006] [0.529,0.622] [0.034,0.035] [146,171]

100 0.0752 0.0014 0.0061 0.5879 0.0345 125.1 0.0752 0.0015 0.0060 0.5651 0.0344 146.7
[0.072,0.078] [0.001,0.002] [0.006,0.006] [0.562,0.614] [0.034,0.035] [116,132] [0.072,0.078] [0.001,0.002] [0.006,0.006] [0.516,0.611] [0.034,0.035] [132,158]

200 0.0754 0.0014 0.0060 0.5781 0.0344 105.4 0.0755 0.0015 0.0060 0.5569 0.0344 121.7
[0.071,0.079] [0.001,0.002] [0.005,0.007] [0.545,0.606] [0.034,0.035] [99,113] [0.071,0.079] [0.001,0.002] [0.005,0.006] [0.498,0.604] [0.034,0.035] [107,134]

Notes: Means and 95% confidence intervals. Unobserved heterogeneity is continuously distributed in the DGP, with underlying dimension

equal to 2. The number of groups K is estimated in every replication, with different choices for γ in (4). 500 simulations. Results for

DGP 4.
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Table S14: Firm and worker effects, two-dimensional firm heterogeneity, large V ar(ψ), different choices of γ, iterated estimators

iterated estimator iterated estimator, bias corrected

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂ Var (ηi) Var

(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values true values

- 0.0660 0.0204 0.0050 0.1373 0.0341 0.0660 0.0204 0.0050 0.1373 0.0341

γ = 1.0 γ = 1.0

10 0.0661 0.0045 0.0050 0.2847 0.0501 4.0 0.0592 0.0079 0.0084 0.4058 0.0468 4.2
[0.063,0.073] [0.002,0.006] [0.001,0.006] [0.115,0.329] [0.049,0.053] [4,4] [0.055,0.073] [0.003,0.010] [0.001,0.010] [0.085,0.482] [0.045,0.052] [4,5]

20 0.0632 0.0080 0.0066 0.2928 0.0466 5.7 0.0592 0.0117 0.0085 0.3192 0.0429 7.4
[0.061,0.065] [0.007,0.009] [0.006,0.007] [0.265,0.319] [0.046,0.048] [5,6] [0.055,0.063] [0.010,0.014] [0.007,0.011] [0.257,0.421] [0.040,0.045] [6,8]

50 0.0608 0.0127 0.0077 0.2785 0.0420 8.9 0.0589 0.0163 0.0086 0.2702 0.0383 11.8
[0.058,0.064] [0.012,0.013] [0.007,0.009] [0.251,0.312] [0.041,0.043] [8,9] [0.056,0.062] [0.015,0.017] [0.007,0.010] [0.222,0.316] [0.037,0.040] [10,12]

100 0.0617 0.0152 0.0074 0.2424 0.0392 13.3 0.0624 0.0179 0.0071 0.2044 0.0366 17.9
[0.059,0.065] [0.014,0.016] [0.006,0.009] [0.207,0.286] [0.038,0.040] [13,14] [0.059,0.065] [0.017,0.019] [0.006,0.009] [0.158,0.256] [0.036,0.038] [17,20]

200 0.0628 0.0174 0.0064 0.1932 0.0371 21.4 0.0642 0.0196 0.0057 0.1552 0.0350 30.1
[0.059,0.066] [0.017,0.018] [0.004,0.008] [0.139,0.242] [0.036,0.038] [20,23] [0.061,0.068] [0.018,0.021] [0.004,0.008] [0.098,0.210] [0.034,0.036] [28,33]

γ = 0.5 γ = 0.5

10 0.0549 0.0093 0.0106 0.4708 0.0452 12.8 0.0473 0.0141 0.0144 0.5393 0.0404 14.0
[0.053,0.057] [0.009,0.010] [0.010,0.011] [0.451,0.489] [0.044,0.046] [12,13] [0.038,0.053] [0.012,0.017] [0.012,0.018] [0.433,0.684] [0.037,0.042] [12,15]

20 0.0555 0.0117 0.0102 0.4027 0.0429 16.1 0.0560 0.0141 0.0100 0.3396 0.0405 19.7
[0.054,0.057] [0.011,0.012] [0.010,0.011] [0.385,0.424] [0.042,0.044] [16,17] [0.054,0.058] [0.013,0.015] [0.009,0.011] [0.311,0.375] [0.039,0.041] [19,22]

50 0.0579 0.0148 0.0092 0.3135 0.0399 26.0 0.0599 0.0170 0.0082 0.2436 0.0376 34.4
[0.055,0.060] [0.014,0.015] [0.008,0.010] [0.288,0.349] [0.039,0.041] [24,28] [0.057,0.062] [0.016,0.018] [0.007,0.009] [0.210,0.287] [0.037,0.039] [30,38]

100 0.0605 0.0167 0.0077 0.2437 0.0378 38.8 0.0630 0.0188 0.0065 0.1780 0.0358 52.9
[0.057,0.063] [0.016,0.018] [0.006,0.009] [0.206,0.281] [0.037,0.039] [36,41] [0.060,0.066] [0.018,0.020] [0.005,0.008] [0.135,0.221] [0.035,0.037] [48,57]

200 0.0631 0.0185 0.0067 0.1976 0.0362 53.2 0.0653 0.0200 0.0056 0.1505 0.0346 71.8
[0.059,0.067] [0.018,0.019] [0.005,0.008] [0.147,0.248] [0.036,0.037] [49,57] [0.061,0.069] [0.019,0.021] [0.004,0.008] [0.097,0.209] [0.034,0.035] [65,78]

γ = 0.25 γ = 0.25

10 0.0653 0.0118 0.0129 0.4641 0.0428 125.6 0.0391 0.0141 0.0121 0.4642 0.0405 152.6
[0.063,0.068] [0.011,0.012] [0.012,0.013] [0.443,0.481] [0.042,0.044] [121,130] [0.034,0.045] [0.013,0.015] [0.011,0.013] [0.432,0.494] [0.040,0.041] [145,160]

20 0.0574 0.0137 0.0114 0.4078 0.0409 138.3 0.0496 0.0155 0.0100 0.3537 0.0391 163.7
[0.056,0.060] [0.013,0.014] [0.011,0.012] [0.391,0.425] [0.040,0.042] [132,143] [0.047,0.053] [0.015,0.016] [0.009,0.011] [0.326,0.380] [0.038,0.040] [153,172]

50 0.0583 0.0162 0.0090 0.2939 0.0384 154.0 0.0599 0.0180 0.0073 0.2117 0.0365 190.1
[0.056,0.060] [0.016,0.017] [0.008,0.010] [0.262,0.321] [0.037,0.039] [146,163] [0.057,0.063] [0.017,0.019] [0.006,0.008] [0.174,0.245] [0.036,0.037] [177,204]

100 0.0618 0.0179 0.0074 0.2222 0.0366 151.1 0.0646 0.0195 0.0058 0.1549 0.0350 186.1
[0.059,0.065] [0.017,0.019] [0.006,0.009] [0.186,0.270] [0.036,0.037] [142,163] [0.062,0.068] [0.019,0.020] [0.004,0.008] [0.115,0.205] [0.034,0.036] [172,202]

200 0.0642 0.0193 0.0061 0.1734 0.0354 133.7 0.0663 0.0205 0.0050 0.1306 0.0342 162.3
[0.060,0.068] [0.018,0.020] [0.004,0.008] [0.127,0.225] [0.035,0.036] [127,141] [0.062,0.070] [0.020,0.022] [0.003,0.007] [0.082,0.186] [0.033,0.035] [151,176]

Notes: Means and 95% confidence intervals. Unobserved heterogeneity is continuously distributed in the DGP, with underlying dimension

equal to 2. The number of groups K is estimated in every replication, with different choices for γ in (4). 500 simulations. Results for

DGP 3.
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Table S15: Firm and worker effects, two-dimensional firm heterogeneity, small V ar(ψ), different choices of γ, iterated estimators

iterated estimator iterated estimator, bias corrected

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂ Var (ηi) Var

(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values true values

- 0.0758 0.0017 0.0057 0.4963 0.0341 0.0758 0.0017 0.0057 0.4963 0.0341

γ = 1.0 γ = 1.0

10 0.0866 0.0000 0.0003 0.1290 0.0358 4.0 0.0867 0.0000 0.0002 0.1169 0.0358 4.0
[0.085,0.088] [0.000,0.000] [0.000,0.000] [0.108,0.150] [0.035,0.036] [4,4] [0.085,0.089] [-0.000,0.000] [0.000,0.000] [0.075,0.153] [0.035,0.036] [4,4]

20 0.0845 0.0002 0.0013 0.2921 0.0356 5.5 0.0823 0.0004 0.0024 0.4556 0.0354 6.9
[0.081,0.087] [0.000,0.000] [0.000,0.002] [0.149,0.420] [0.035,0.036] [5,6] [0.078,0.087] [0.000,0.001] [0.000,0.005] [0.174,0.709] [0.035,0.036] [6,8]

50 0.0791 0.0007 0.0041 0.5444 0.0352 8.0 0.0761 0.0010 0.0056 0.6584 0.0349 10.0
[0.077,0.082] [0.001,0.001] [0.004,0.005] [0.516,0.573] [0.035,0.036] [8,8] [0.073,0.079] [0.001,0.001] [0.005,0.006] [0.609,0.709] [0.034,0.036] [10,10]

100 0.0775 0.0009 0.0050 0.6035 0.0349 11.1 0.0756 0.0011 0.0060 0.6600 0.0347 14.2
[0.074,0.081] [0.001,0.001] [0.004,0.006] [0.583,0.627] [0.034,0.036] [11,12] [0.072,0.079] [0.001,0.001] [0.005,0.007] [0.626,0.694] [0.034,0.035] [14,16]

200 0.0759 0.0011 0.0055 0.6174 0.0348 15.2 0.0750 0.0012 0.0060 0.6345 0.0347 19.3
[0.071,0.080] [0.001,0.001] [0.005,0.006] [0.589,0.648] [0.034,0.035] [14,16] [0.070,0.079] [0.001,0.001] [0.005,0.007] [0.593,0.674] [0.034,0.035] [17,21]

γ = 0.5 γ = 0.5

10 0.0799 0.0006 0.0037 0.5408 0.0353 12.2 0.0777 0.0008 0.0047 0.6157 0.0351 12.7
[0.078,0.082] [0.000,0.001] [0.003,0.004] [0.520,0.559] [0.035,0.036] [12,13] [0.075,0.080] [0.001,0.001] [0.004,0.006] [0.536,0.751] [0.034,0.036] [12,14]

20 0.0780 0.0008 0.0046 0.5940 0.0351 15.1 0.0760 0.0010 0.0056 0.6482 0.0349 18.0
[0.076,0.080] [0.001,0.001] [0.004,0.005] [0.578,0.613] [0.034,0.036] [15,16] [0.074,0.078] [0.001,0.001] [0.005,0.006] [0.619,0.676] [0.034,0.035] [18,20]

50 0.0760 0.0010 0.0054 0.6299 0.0349 21.6 0.0748 0.0011 0.0060 0.6568 0.0347 27.0
[0.073,0.079] [0.001,0.001] [0.005,0.006] [0.613,0.650] [0.034,0.036] [20,23] [0.072,0.077] [0.001,0.001] [0.005,0.007] [0.630,0.685] [0.034,0.035] [24,30]

100 0.0753 0.0011 0.0057 0.6364 0.0348 28.2 0.0746 0.0012 0.0061 0.6457 0.0347 35.7
[0.072,0.079] [0.001,0.001] [0.005,0.006] [0.612,0.660] [0.034,0.035] [26,31] [0.071,0.078] [0.001,0.001] [0.006,0.007] [0.607,0.674] [0.034,0.035] [32,40]

200 0.0756 0.0012 0.0059 0.6231 0.0347 35.0 0.0753 0.0013 0.0061 0.6137 0.0346 44.0
[0.071,0.080] [0.001,0.001] [0.005,0.007] [0.594,0.656] [0.034,0.035] [31,39] [0.071,0.080] [0.001,0.002] [0.006,0.007] [0.569,0.657] [0.034,0.035] [38,50]

γ = 0.25 γ = 0.25

10 0.0781 0.0011 0.0059 0.6217 0.0347 124.3 0.0650 0.0014 0.0063 0.6481 0.0345 148.7
[0.076,0.080] [0.001,0.001] [0.005,0.006] [0.602,0.642] [0.034,0.035] [121,127] [0.057,0.072] [0.001,0.002] [0.006,0.007] [0.602,0.692] [0.034,0.035] [142,154]

20 0.0755 0.0012 0.0059 0.6122 0.0346 131.0 0.0731 0.0014 0.0060 0.5983 0.0345 150.3
[0.074,0.077] [0.001,0.001] [0.006,0.006] [0.586,0.635] [0.034,0.035] [125,137] [0.071,0.075] [0.001,0.002] [0.006,0.006] [0.556,0.641] [0.034,0.035] [140,160]

50 0.0754 0.0013 0.0060 0.5928 0.0345 134.7 0.0752 0.0014 0.0059 0.5713 0.0344 159.0
[0.073,0.078] [0.001,0.002] [0.005,0.006] [0.568,0.619] [0.034,0.035] [127,142] [0.073,0.078] [0.001,0.002] [0.005,0.007] [0.529,0.619] [0.034,0.035] [146,171]

100 0.0754 0.0014 0.0060 0.5806 0.0345 125.1 0.0753 0.0015 0.0060 0.5597 0.0344 146.7
[0.072,0.078] [0.001,0.002] [0.006,0.006] [0.547,0.609] [0.034,0.035] [116,132] [0.072,0.078] [0.001,0.002] [0.006,0.006] [0.503,0.609] [0.034,0.035] [132,158]

200 0.0755 0.0014 0.0060 0.5704 0.0344 105.4 0.0756 0.0015 0.0059 0.5499 0.0343 121.7
[0.071,0.080] [0.001,0.002] [0.005,0.006] [0.532,0.602] [0.034,0.035] [99,113] [0.071,0.080] [0.001,0.002] [0.005,0.007] [0.490,0.604] [0.034,0.035] [107,134]

Notes: Means and 95% confidence intervals. Unobserved heterogeneity is continuously distributed in the DGP, with underlying dimension

equal to 2. The number of groups K is estimated in every replication, with different choices for γ in (4). 500 simulations. Results for

DGP 4.

66



Table S16: Firm and worker effects, discrete firm heterogeneity (K∗ = 10)

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) % misclass.

true values

- 0.0758 0.0017 0.0057 0.4963 0.0341

two-step with K = K∗ = 10

10 0.0758 0.0013 0.0057 0.5770 0.0346 69.0%
[0.074,0.077] [0.001,0.001] [0.005,0.006] [0.566,0.586] [0.034,0.035] [0.678,0.705]

20 0.0758 0.0015 0.0057 0.5355 0.0344 58.5%
[0.074,0.077] [0.001,0.002] [0.005,0.006] [0.525,0.546] [0.034,0.035] [0.560,0.614]

50 0.0759 0.0016 0.0056 0.5083 0.0342 39.3%
[0.075,0.077] [0.001,0.002] [0.005,0.006] [0.499,0.517] [0.034,0.035] [0.338,0.476]

100 0.0759 0.0017 0.0056 0.4981 0.0342 22.6%
[0.075,0.077] [0.001,0.002] [0.005,0.006] [0.489,0.507] [0.033,0.035] [0.171,0.359]

200 0.0759 0.0017 0.0056 0.4945 0.0341 7.5%
[0.074,0.077] [0.002,0.002] [0.005,0.006] [0.484,0.504] [0.033,0.035] [0.050,0.115]

bias corrected with estimated K

10 0.0778 0.0013 0.0047 0.4527 0.0346
[0.076,0.079] [0.001,0.002] [0.004,0.005] [0.441,0.465] [0.034,0.035]

20 0.0762 0.0016 0.0055 0.4917 0.0342
[0.075,0.078] [0.001,0.002] [0.005,0.006] [0.478,0.502] [0.034,0.035]

50 0.0760 0.0017 0.0056 0.4906 0.0342
[0.075,0.077] [0.001,0.002] [0.005,0.006] [0.478,0.503] [0.033,0.035]

100 0.0759 0.0017 0.0057 0.4909 0.0341
[0.074,0.077] [0.002,0.002] [0.005,0.006] [0.480,0.501] [0.033,0.035]

200 0.0757 0.0018 0.0057 0.4930 0.0341
[0.074,0.077] [0.002,0.002] [0.005,0.006] [0.483,0.503] [0.033,0.035]

Notes: Means and 95% confidence intervals. Unobserved heterogeneity is discretely distributed in the

DGP, with K∗ = 10 groups. In the top panel the true number of groups is used. The last column

shows frequencies of misclassification. In the bottom panel the number of groups is estimated in every

replication. 500 simulations. Results for DGP 5.
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Figure S1: Estimates of the parameters governing the probabilities of being a mover type across

simulations

A. Homogeneous costs, GFE
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B. Homogeneous costs, fixed-effects
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C. Homogeneous costs, random-effects
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D. Heterogeneous costs, GFE
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Notes: See notes to Figures 4 and 5. a and b are the intercept and slope in the probability of being a

mover type.
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Figure S2: Parameter estimates across simulations, fixed K

ρ̂ (utility), K=8 ĉ (cost), K=8 â (stayer pr., intercept), K=8 b̂ (stayer pr., slope), K=8

ρ̂ (utility), K=6 ĉ (cost), K=6 â (stayer pr., intercept), K=6 b̂ (stayer pr., slope), K=6

ρ̂ (utility), K=4 ĉ (cost), K=4 â (stayer pr., intercept), K=4 b̂ (stayer pr., slope), K=4

ρ̂ (utility), K=2 ĉ (cost), K=2 â (stayer pr., intercept), K=2 b̂ (stayer pr., slope), K=2
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Notes: See note to Figure 4. K is kept fixed, and we focus on the model with homogeneous mobility

costs. 500 replications.
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Figure S3: Estimates of firm and worker heterogeneity across simulations

all bias corrected
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Notes: Means (solid line) and 95% confidence intervals. The dashed line indicates the true parameter

value. Unobserved heterogeneity is continuously distributed in the DGP. The number of groups K is

estimated in every replication. 500 replications.
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Figure S4: Dimension of firm heterogeneity

A. Estimation of K B. K̂ against firm size
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Notes: Source Swedish administrative data. Left graph shows the logarithm of Q̂(K) as a function of

K, for different average firm sizes S. Horizontal lines show the corresponding value of ln(V̂h). The

right graph shows the relationship between the log of K̂ and the log of the average firm size in the

sample, across samples.
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Figure S5: Estimates of firm and worker heterogeneity across simulations, two-dimensional firm

heterogeneity, large variance of firm effects
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Notes: Means (solid line) and 95% confidence intervals. � indicates the two-step bias-corrected GFE

estimator and � indicates the iterated bias-corrected GFE estimator. The different columns repre-

sent different values of γ (that is, different selection rules for the number of groups). Unobserved

heterogeneity is continuously distributed in the DGP. The number of groups K is estimated in every

replication. 500 replications. Results for DGP 3.
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Figure S6: Two-dimensional firm heterogeneity, small variance of firm effects
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Notes: See the notes to Figure S5. Results for DGP 4.
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Figure S7: Estimates of firm and worker heterogeneity across simulations, two-dimensional firm

heterogeneity, large variance of firm effects, different number of job movers per firm
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Notes: Means (solid line) and 95% confidence intervals. � indicates the two-step bias-corrected GFE

estimator, � the iterated bias-corrected GFE estimator, � the fixed-effects estimator, and � the bias-

corrected fixed-effects estimator. The different columns represent different values of γ (that is, different

selection rules for the number of groups). Unobserved heterogeneity is continuously distributed in the

DGP. The number of groups K is estimated in every replication. 500 replications. Results for DGP
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Figure S8: Estimates of firm and worker heterogeneity across simulations, two-dimensional firm

heterogeneity, small variance of firm effects, different number of job movers per firm
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Notes: See the notes to Figure S7. Results for DGP 4.
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